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Critical structure factors of bilinear fields in O „N… vector models
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We compute the two-point correlation functions of general quadratic operators in the high-temperature phase
of the three-dimensional O(N) vector model by using field-theoretical methods. In particular, we study the
small- and large-momentum behavior of the corresponding scaling functions, and give general interpolation
formulas based on a dispersive approach. Moreover, we determine the crossover exponentfT associated with
the traceless tensorial quadratic field, by computing and analyzing its six-loop perturbative expansion in fixed
dimension. We findfT51.184(12),fT51.271(21), andfT51.40(4) forN52,3,5, respectively.
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I. INTRODUCTION

In nature, many physical systems undergo phase tra
tions belonging to universality classes of the O(N) vector
models. Their universal critical properties can be determi
theoretically by considering thef4 Hamiltonian

H5E ddxF1

2
]mfW •]mfW 1

1

2
rfW •fW 1

1

4!
u~fW •fW !2G , ~1!

wherefW (x) is anN-component real field. Various computa
tional methods, supported by renormalization-group~RG!
theory, have provided accurate determinations of several
versal quantities; see, e.g., Ref.@1# for a recent comprehen
sive review. Among others, we should mention the criti
exponents, the equation of state, and the correlation fu
tions of the order parameterfW (x). However, for some ex-
perimental systems one is also interested in the behavio
correlation functions describing the critical fluctuations
secondary, quadratic local fields. Due to the symmetry of
theory, there are two independent quantities that are q
dratic in the fundamental fieldfW (x): one is the local energy
density

E~x!5fW ~x!•fW ~x!, ~2!

which is O(N) invariant; the other one is the anisotrop
second-order traceless tensor

Ti j ~x!5f i~x!f j~x!2d i j

1

N
fW ~x!•fW ~x!. ~3!

The crossover exponentfT associated with the traceles
tensor field Ti j (x) describes the instability of the
O(N)-symmetric theory against anisotropy@2–5#. It is thus
relevant for the description of multicritical phenomena, f
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instance, the critical behavior near a bicritical point whe
two critical lines with O(N) and O(M ) symmetry meet, giv-
ing rise to a critical theory with enlarged O(N1M ) symme-
try, see, e.g., Refs.@6–8#. This bicritical behavior has bee
the object of new studies quite recently, since it appears
the SO~5! theory of superconductivity@9#, and has been ob
served experimentally in organic conductors@10#. As dis-
cussed in Ref.@11#, the correlation functionsGE(x2y)
[^E(x)E(y)& and GT(x2y)[^Ti j (x)Ti j (y)& are relevant
in the description of strain-strain correlations in certain l
uids and solids, where an effective coupling between
order parameter and the elastic deformations occurs. M
over, in the special caseN52, the traceless tensor fiel
Ti j (x) is related to the second-harmonic order paramete
density-wave systems, whose critical behavior belongs to
XY universality class, see, e.g., Refs.@11–13#. Experimen-
tally, such behavior is observed at the nematic–smectiA
transition in liquid crystals@11,12,14–18#. In these systems
the structure factor of the secondary order parameterTi j has
been measured using x-ray scattering techniques@17,18#.
The crossover exponentfT is also relevant@19# in the de-
scription of crossover effects in diluted Ising antiferroma
nets withn-fold degenerate ground state@20#, for instance, in
some diluted magnetic semiconductors such as Cd12xMnxTe.

In this paper, we determine the crossover exponentfT .
Such a quantity has already been obtained in the framew
of the e expansion to three loops@21#, from the analysis of
high-temperature expansions@6# for N52,3, and by means
of a Monte Carlo simulation@22# for N55. Here, we con-
sider the alternative field-theoretical~FT! method based on a
fixed-dimension expansion in powers of the zero-moment
quartic coupling@23#, and perform a six-loop calculation o
fT . For the physically interesting casesN52,3,5 we obtain

fT51.184~12! ~N52!,

fT51.271~21! ~N53!,

fT51.40~4! ~N55!. ~4!

We also consider the correlation functionsGE(x) and
GT(x) in the high-temperature phase. In the critical limit, t
©2002 The American Physical Society15-1
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Fourier transformG̃T(q) obeys a scaling law that is analo
gous to that of the fundamental correlation function, i.e.,

G̃T~q,t !5AT
1t2gTf T~q2j2!, ~5!

where t[(T2Tc)/Tc is the reduced temperature,gT52fT
221a is the tensor susceptibility exponent, andj is the
second-moment correlation length computed from the tw
point function of the order parameter. The same scaling
havior holds for the correlation functionsG̃E(q,t) of systems
in the Ising universality class, witha replacing gT , i.e.,
G̃E(q,t)5AE

1t2a f E(q2j2). For N>2, however,a is nega-
tive and an additional background term should be taken
account. In this case, in the critical limit, we have

G̃E~q,t !5BE1G̃E,sing~q,t !5BE1AE
1t2a f E~q2j2!. ~6!

The background termBE is the dominant one and the sing
lar part vanishes at criticality. In this case, by using positiv
~unitarity in FT language! arguments, one may also sho
that AE

1,0, as observed in experiments.
In this paper we extend the two-loope-expansion compu-

tation of Refs.@11,18#. We compute the universal scalin
functions f E(q2j2) and f T(q2j2) using thee expansion and
the expansion in fixed dimensiond53. First, we determine
the small-momentum behavior to four loops in the fixe
dimension expansion and to three loops ine expansion. In
particular, we obtain accurate estimates of the experimen
relevant ratiosXE,T[jE,T

2 /j2, where jE,T is the second-
moment correlation length computed fromGE,T(x) or from
its singular part ifa is negative. For instance, forN51, we
find

XE50.0140~5!, ~7!

and forN52,

XE520.0017~1!, XT50.041~2!. ~8!

~We shall later comment on the negative value ofXE .)
Moreover, we study the large-momentum behavior of
structure factors and construct interpolations valid for
momenta by using the dispersive approach applied
^f(0)f(x)& by Bray @24#.

The paper is organized as follows. In Sec. II we report
computation of the crossover exponentfT to six loops in the
fixed-dimension expansion and compare our results with
existing theoretical and experimental estimates~Sec. II D!. In
Sec. III we report the computation of the structure factors
Sec. III A we briefly summarize the expected behavior of
structure factors in the critical region and set our notatio
In Sec. III B we explain our FT calculation, whose results a
presented in Sec. III C. In Sec. III D we finally give approx
mate expressions for the structure factors by using a dis
sive approach. In Sec. IV we briefly discuss some phys
systems where our results can be applied and compared
experiments. Appendix A discusses the large-momentum
havior of the structure factors. Details of the perturbat
calculation are reported in Appendix B.
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II. THE CROSSOVER EXPONENT ASSOCIATED WITH
THE TENSOR COMPOSITE FIELD

A. Zero-momentum scaling behavior

The zero-momentum behavior of correlation functions
volving generic local operatorsO(x), such asE(x) and
Ti j (x), can be obtained from the free energy in the prese
of an external fieldhO coupled withO(x). Indeed, the sin-
gular part of the free energy scales as@6#

Fsing}t22a f ~h/tb1g,hO /tfO!, ~9!

whereh is the magnetic field andfO is the crossover expo
nent. Then, by differentiating with respect tohO , one obtains
the zero-momentum correlations and the RG relations

bO522a2fO ,

gO5221a12fO , ~10!

where the exponentsbO and gO describe, respectively, th
critical ~singular! behavior of the averagêO(x)&;utubO and
of the susceptibilityxO[(x^O(0)O(x)&c;t2gO.

In this section we compute the crossover exponentfT
associated with the tensor fieldTi j (x) in the fixed-dimension
FT framework, by performing a six-loop perturbative expa
sion. Of course, the crossover exponent associated with
energy densityE(x) is trivial, i.e., fE51 andgE5a.

B. The fixed-dimension expansion: Generalities

In the fixed-dimension FT approach, one renormalizes
theory by introducing a set of zero-momentum conditions
the two-point and four-point one-particle irreducible corre
tion functions

G i j
(2)~p!5d i j Zf

21@m21p21O~p4!#, ~11!

G i jkl
(4) ~0!5meZf

22g 1
3 ~d i j dkl1d ikd j l 1d i l d jk!, ~12!

wheree[42d andd is the space dimension. They relate t
massm and the zero-momentum renormalized couplingg to
the corresponding Hamiltonian parametersr andu as

u5megZu~g!Zf~g!22. ~13!

In addition, one introduces the functionZt that is defined by
the relation

G i j
(1,2)~0!5d i j Zt~g!21, ~14!

where G (1,2)(p) is the one particle irreducible two-poin
function with an insertion of the operator1

2 fW 2.
The critical theory is obtained by settingg5g* , where

g* is the nontrivial zero of theb function

b~g!5
]g

]mU
u

. ~15!

The standard critical exponents are then obtained by ev
ating the RG functions
5-2
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hf~g!5
] ln Zf

] ln mU
u

,

h t~g!5
] ln Zt

] ln mU
u

, ~16!

at the fixed pointg* , i.e.,

h5hf~g* !,

1

n
521h t~g* !2hf~g* !. ~17!

In three dimensions these RG functions are known to
loops for generic values ofN @25,26#. ForN50,1,2,3, seven-
loop series forhf andh t were computed in Ref.@27#.

In order to evaluate the crossover exponentfT associated
with the operatorTi j (x), we define the renormalization func
tion ZT(g) from the one-particle irreducible two-point func
tion GT

(2)(p) with an insertion of the operatorTi j , i.e., we set

GT
(2)~0! i j ;k,l5ZT

21~g!Ai jkl , ~18!

where
ng

an
r

rb
r

-

04611
ix

Ai jkl 5d ikd j l 1d i l d jk2
2

N
d i j dkl , ~19!

so thatZT(0)51. Then, we compute the RG function

hT~g!5
] ln ZT

] ln m U
u

5b~g!
d ln ZT

dg
~20!

andhT5hT(g* ). Finally, the RG scaling relation

fT5~21hT2h!n ~21!

allows us to determinefT .

C. The fixed-dimension expansion: Six-loop results

We computedGT
(2)(0) to six loops. The calculation is

rather cumbersome, since it requires the evaluation of
Feynman diagrams. We handled it with a symbolic manip
lation program, which generates the diagrams and comp
the symmetry and group factors of each of them. We used
numerical results compiled in Ref.@28# for the integrals as-
sociated with each diagram. We obtained
hT~ ḡ!52ḡ
2

81N
1ḡ2

2~61N!

3~81N!22ḡ3
18.312 84413.433 275N20.216 745 89N2

~81N!3

1ḡ4
140.799 37137.573 408N11.036 273 6N210.094 342 565N3

~81N!4

2ḡ5
1340.0751416.716 57N117.622 623N220.911 280 56N320.050 833 747N4

~81N!5

1ḡ6
15 651.26615665.6519N1433.687 12N211.067 550 3N310.679 105 59N410.031 393 004N5

~81N!6
1O~ ḡ7!,

~22!
rt

ld
where, as usual, we have introduced the rescaled coupliḡ
defined by

g5
48p

81N
ḡ. ~23!

Field-theoretical perturbative expansions are divergent,
thus, in order to obtain accurate results, an appropriate
summation is required. We use the method of Ref.@29# that
takes into account the large-order behavior of the pertu
tive expansion, see, e.g., Ref.@30#. Mean values and erro
bars are computed using the algorithm of Ref.@31#.

Given the expansion ofhT(ḡ), we determine the pertur
bative expansion offT(ḡ), bT(ḡ), and gT(ḡ), using the
d
e-

a-

relations ~10! and ~21!. For N52, we obtain @32# fT
51.176(4),1.178~3!, bT50.821(6),0.825~5!, and gT
50.355(2),0.358~3!, where, for each exponent, we repo

TABLE I. Critical exponents associated with the tensor fie
Ti j (x).

N fT bT gT

2 1.184~12! 0.830~12! 0.354~25!

3 1.271~21! 0.863~21! 0.41~4!

4 1.35~4! 0.90~4! 0.45~8!

5 1.40~4! 0.90~4! 0.50~8!

8 1.55~4! 0.94~4! 0.61~8!

16 1.75~6! 0.98~6! 0.77~12!
5-3
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the estimate obtained from the direct analysis and from
analysis of the series of the inverse, i.e., from 1/fT(g), etc.
The two estimates obtained for each exponent agree w
error bars, but, with the quoted errors, the scaling relati
~10! are not well satisfied. For instance, usingn
50.671 55(27)~Ref. @33#! andbT50.823(6) we obtainfT
51.192(6), while using the same value ofn and gT
50.3565(30) we havefT51.1855(15). These two estimate
are slightly higher than those obtained from the analysis
fT(g) and 1/fT(g). Clearly, the errors are somewhat unde
estimated, a phenomenon that is probably connected with
nonanalyticity@34–36# of the RG functions at the fixed poin
ḡ* .
c

e
e

a
s
e

-
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-

r
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In order to obtain a conservative estimate, we have t
decided to take as estimate offT the weighted average of th
direct estimates and of the estimates obtained usingbT and
gT together with the scaling relations@37#. The~very conser-
vative! error is such to include all estimates. The other e
ponents are dealt with analogously. The final results for s
eral values ofN are reported in Table I.

D. Comparison with previous results

The exponentfT can also be computed in thee expan-
sion. Three-loop series were derived in Ref.@21#,
fT511e
N

2~N18!
1e2

N3124N2168N

4~N18!3

1e3
N5148N41788N313472N215024N248N~5N122!~N18!z~3!

8~N18!5 1O~e4!. ~24!
a

al
-

nd
nt
The coefficients of this series decrease rapidly; for instan
we have

fT~N52!5110.1e10.06e220.007 358 99e31O~e4!,

~25!

fT~N53!5110.136 364e10.083 959e210.000 991e3

1O~e4!, ~26!

for N52 and 3, respectively. Thus, any resummation giv
estimates that do not differ significantly from those obtain
by simply settinge51. For N52 and 3 we obtainfT
'1.15 and 1.22, in reasonable agreement—keeping into
count that these are three-loop results—with the estimate
Table I. They are also in agreement with the estimate of R
@14# that reportsfT51.16(7) forN52, which has been ob
tained by analyzing the sameO(e3) series and the two-loop
series calculated in the framework of the fixed-dimens
expansion.

The exponentfT has also been computed in the 1/N ex-
pansion@38# for d53,

fT522
32

p2N
1OS 1

N2D . ~27!

For N516 it givesfT51.80, which agrees with the FT re
sult of Table I.

The exponentfT has been estimated by high-temperatu
expansion techniques in Ref.@6#, obtainingfT51.175(15)
for N52 andfT51.250(15) forN53, in agreement with
the FT estimates. ForN55, the exponentfT has also been
determined by means of a Monte Carlo simulation@22#, fT
51.387(30).
e,

s
d

c-
of
f.

n

e

Experimental estimates offT are reported in Ref.@39#.
We mention the experimental resultfT51.17(2) for the (2
→111) bicritical point in GdAlO3 @40#. The (3→211)
bicritical behavior has been studied in MnF2 @41#, obtaining
fT51.279(31). The experimental results obtained for
nematic–smectic-A transition reported in Ref.@17# are bT
50.76(4) andgT50.41(9).

III. THE STRUCTURE FACTOR OF THE BILINEAR
FIELDS IN THE HIGH-TEMPERATURE PHASE

A. Scaling behavior

The two-point correlation function of the fundament
field, i.e.,G(x)5^fW (0)•fW (x)&, is of central importance be
cause its Fourier transformG̃(q) is directly related to the
scattering intensity in scattering experiments. Fort→01, its
asymptotic behavior is given by@42,43#

G̃~q!5C1t2g f ~q2j2!, ~28!

whereC1 is the amplitude of the magnetic susceptibility a
the function f (y) is universal. Taking the second-mome
correlation length

j2[
1

2d

(
x

uxu2G~x!

(
x

G~x!

52G̃~0!21
]G̃~q!

]q2 U
q250

~29!

as length scale, the small-momentum behavior off (y) is
f (y)51/(11y)1O(y2), with very smallO(y2) corrections.
Theoretical results for the correlation functionG̃(q) are re-
viewed, e.g., in Ref.@1#.
5-4
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In this section we study the scaling behavior of the tw
point correlation functions of the bilinear fieldsE(x) and
Ti j (x). Similar to the specific heat, which is given by th
zero-momentum component of the two-point functi
G̃E(q,t), the asymptotic behavior ofG̃E,T(q,t) for t→01 is
not as simple as that of the fundamental two-point functi
Indeed, in the scaling limitt→01,q2→0 with q2j2 fixed,
RG theory predicts

G̃E,T~q,t !5BE,T@11O~ t !#

1AE,T
1 t2gE,Tf E,T~q2j2!@11O~ tD!#, ~30!

whereBE,T andAE,T
1 are nonuniversal constants,f E,T(y) is a

universal function satisfyingf E,T(0)51, andD is the expo-
nent related to the leading irrelevant operator. As amply d
cussed in textbooks—see, e.g., Ref.@30#—the presence o
the background termBE in the asymptotic behavior o
G̃E(q,t) is related to the need of an additive renormalizatio
One may easily see that the same argument applies to
two-point functionG̃T(q,t) of Ti j .

Since gT.0 for all N>2, the leading behavior of the
tensor two-point function is determined by the singular te
depending on the scaling functionf T(q2j2),

G̃T~q,t !5AT
1t2gTf T~q2j2!@11O~ tD!1O~ tgT!#. ~31!

The background termBT gives subleading corrections of o
der tgT, that turn out to be more relevant than the stand
scaling corrections of ordertD. Indeed, for the physically
relevant casesN52,3, one finds thatgT,D (D'0.53 for
N52 andD'0.55 for N53, see, e.g., the results reviewe
in Ref. @1#!. The difference decreases asN→`, since both
gT andD converge to 1 with the same 1/N correction.

The same thing holds for the energy two-point function
the case of the Ising universality class for whicha is posi-
tive, a50.1199(7)~Ref. @44#!, i.e.,

G̃E~q,t !5AE
1t2a f E~q2j2!@11O~ tD!1O~ ta!#, ~32!

whereD'0.53, see, e.g., Ref.@45#. On the other hand, fo
the O(N) vector models withN>2, sincea,0, the back-
ground termBE gives the leading behavior of the energ
two-point functionG̃E(q,t),

G̃E~q,t !5BE1AE
1t2a f E~q2j2!@11O~ tD!#1O~ t !.

~33!

In these cases, the singular part vanishes fort50 and is
usually responsible for a cusplike finite maximum in the s
cific heat at the critical point, as it is observed in experime
and in lattice models. This requires the nonuniversal cons
AE

1 to be negative~see the discussion in Sec. III C 1!.
In order to single out the singular behavior, one may c

sider the derivative with respect to the reduced temperatut,
04611
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WE,T~q,t ![
]G̃E,T

]t
52gE,TAE,T

1 t212gE,TwE,T~q2j2!

3@11O~ tD,t11gE,T!#, ~34!

where

wE,T~y!5 f E,T~y!1
2n

gE,T
y fE,T8 ~y!511O~y! ~35!

is another universal function.

1. Small-momentum behavior

At small momentum, i.e., fory[q2j2!1, the scaling
functions f E,T(y) behave as

f E~y!511 (
n51

enyn, ~36!

f T~y!511 (
n51

anyn. ~37!

Using Eq.~35!, these expansions can be related to those
the scaling functionswE,T(y),

wE~y!511 (
n51

ēnyn, ~38!

wT~y!511 (
n51

ānyn. ~39!

Indeed, it is immediate to obtain

ēn5enS 11
2nn

a D , ~40!

ān5anS 11
2nn

gT
D . ~41!

Simple arguments based on perturbation theory suggest
the convergence radiusRc of the small-momentum expan
sions is determined by the two-particle cut. The singularity
the complex plane closest to the origin is expected to beys

524SM
1 , where SM

15j2/jgap
2 and jgap is the exponential

correlation length that determines the large-distance ex
nential behavior of the fundamental two-point functio
Therefore,Rc54SM

1 . For the O(N) vector models,SM
1 is

very close to 1, so thatRc'4. For example, SM
1

50.999 601(6) for the Ising universality class@44#, SM
1

50.999 592(6) for theXY universality class@33#, SM
1

50.999 59(4) for the Heisenberg universality class@46#, and
SM

15120.004 590/N1O(1/N2) in the large-N limit @46#. As
a consequence, forn→`,

en11

en
'

an11

an
'

ēn11

ēn

'
ān11

ān

'2
1

4
. ~42!
5-5
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The constantse1 and a1 are related to the universal ratio
XE,T[jE,T

2 /j2 introduced in Refs.@11,18#, wherejE,T are the
second-moment correlation lengths associated with the
gular part of the energy and of the tensor two-point fun
tions, respectively. More precisely, ifgT,E.0, the correla-
tion length is defined by Eq.~29!, replacing G̃(q) with
G̃E,T(q). If the exponent is negative, then

jE
252~G̃E~0!2BE!21

]G̃E~q!

]q2 U
q250

. ~43!

The universal ratiosXE andXT are given byXE52e1 and
XT52a1.

2. Large-momentum behavior

The large-momentum behavior of the fundamental co
lation function is given by the Fisher-Langer formula@47#,

f ~y!'
A1

y12h/2 S 11
A2

y(12a)/(2n)
1

A3

y1/(2n)D . ~44!

One may derive a similar expression for the correlation fu
tions of the bilinear fields. The large-momentum behavior
the structure factors can be studied by performing a sh
distance expansion of the two-point functionsGE(x) and
GT(x). Following the method outlined in Ref.@48#, we ob-
tain the corresponding asymptotic expansions fory→`,

f E~y!'E1y2a/(2n)S 11
E2

y(12a)/(2n)
1

E3

y1/(2n)D , ~45!

f T~y!'T1y2gT /(2n)S 11
T2

y(12a)/(2n)
1

T3

y1/(2n)D . ~46!

The derivation of these formulas is reported in Appendix
Notice that for the O(N) vector models withN>2, sincea
,0, f E(y) increases asy→`.

B. Field-theory calculations: Generalities

Because of the presence of the background term, the
calculation of the scaling functionsf E(y) and f T(y) requires
some care. First, we define the dimensionless functions

GE,T~g,y![uG̃E,T~q,t,u!, ~47!

where g is the four-point renormalized coupling. Then,
order to eliminate the constant additive renormalization te
we consider the derivative with respect tom of GE,T(g,y),

WE,T~g,y!5m
]

]m
GE,T~g,y!U

u

5b~g!
]GE,T~g,y!

]g
22y

]GE,T~g,y!

]y
. ~48!
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At the fixed pointg* , the functionsWE,T(g,y) differ from
WE,T(q,t), defined in Eq.~34!, by a multiplicative factor
independent of q. Therefore, the scaling function
wE,T(g,y), defined in Eq.~35!, are given by

wE,T~g,y!5
WE,T~g,y!

WE,T~g,0!
. ~49!

Note that the zero-momentum functionsWE,T(g,0) are re-
lated to the exponentsgE,T by the relation

2
gE,T

n
5 lim

g→g*
b~g!

d ln WE,T~g,0!

dg
. ~50!

C. Field-theoretical results

1. Small-momentum expansion

We compute the small-momentum expansion of the str
ture factors to four loops in the fixed-dimension approa
and to three loops in thee expansion.

In the fixed-dimension approach, we first determine
expansion in powers ofg of the coefficientsēi andāi defined
in Eqs.~38! and~39!. The explicit expressions are reported
Appendix B. In order to obtain numerical estimates we u
the same resummation procedure outlined in the prece
section. Our numerical results are presented in Tables II
III. Note that, as expected, the ratiosēi 11 /ēi and āi 11 /āi
quickly approach21/4. The corresponding coefficientsei
andai are obtained by using the relations~40! and~41!. For
the exponentn we use the same values reported before@37#,
while for gT we use the results of Table I. In the case ofai a
large part of the uncertainty is due to the error in the ex
nent gT that enters the relation betweenāi and ai . The re-

TABLE II. Estimates of the coefficientsēi for several values
of N.

N ē1 ē2 /ē1 ē3 /ē2 ē4 /ē3 ē5 /ē4

1 20.170(5) 20.206(1) 20.221(1) 20.229(1) 20.234(1)
2 20.155(5) 20.199(1) 20.216(2) 20.226(2) 20.232(2)
3 20.142(5) 20.193(2) 20.213(2) 20.222(2) 20.230(3)
4 20.133(6) 20.189(3) 20.211(2) 20.222(3) 20.228(3)
5 20.126(6) 20.186(3) 20.209(3) 20.221(3) 20.228(4)
8 20.111(5) 20.180(3) 20.206(3) 20.219(4) 20.227(4)

TABLE III. Estimates of the coefficientsāi for several values
of N.

N ā1 ā2 /ā1 ā3 /ā2 ā4 /ā3 ā5 /ā4

2 20.203(2) 20.224(2) 20.232(1) 20.236(1) 20.239(1)
3 20.208(2) 20.226(1) 20.234(1) 20.238(1) 20.240(1)
4 20.213(2) 20.228(1) 20.235(1) 20.239(1) 20.241(1)
5 20.216(1) 20.230(1) 20.236(1) 20.240(1) 20.242(1)
8 20.224(1) 20.235(1) 20.239(1) 20.242(1) 20.244(1)
5-6
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TABLE IV. Results of the coefficientsei andai for several values ofN and from various analyses:~a!

(d53) by using the fixed-dimension results forēi andāi , and by directly analyzing the series forai ; ~b! (e
expan! by resummation of the three-loope expansion.

N i ei (d53)from ēi
ai (d53)from āi

ai (d53)direct ei (e expan! ai (e expan!

1 1 20.0137(2) 20.0145(11)
2 0.147(3)31022 0.17(2)31022

3 20.219(4)31023 20.26(3)31023

4 0.38(1)31024 0.47(6)31024

5 20.71(1)31025 20.9(1)31025

2 1 0.0017~1! 20.042(2) 20.042(1) 0.000~2! 20.041(2)
2 20.017(1)31022 0.530(3)31022 0.52(1)31022 0.00(3)31022 0.48(3)31022

3 0.024(2)31023 20.85(1)31023 20.84(3)31023 0.00(5)31023 20.75(6)31023

4 20.041(2)31024 1.5(2)31024 1.5(1)31024 0.0(1)31024 1.3(1)31024

5 0.076(4)31025 23.0(2)31025 23.0(2)31025 0.0(2)31025 22.6(2)31025

3 1 0.015~2! 20.047(4) 20.0465(8) 0.012~2! 20.045(1)
2 20.14(2)31022 0.59(5)31022 0.59(1)31022 20.13(3)31022 0.54(3)31022

3 0.19(2)31023 20.96(9)31023 20.96(2)31023 0.19(5)31023 20.85(5)31023

4 20.32(4)31024 1.8(2)31024 1.75(7)31024 20.3(1)31024 1.5(1)31024

5 0.6(1)31025 23.4(3)31025 23.4(2)31025 0.6(2)31025 22.9(2)31025

4 1 0.026~1! 20.05(1) 20.0500(6) 0.022~2! 20.049(1)
2 20.23(1)31022 0.63(9)31022 0.645(5)31022 20.22(3)31022 0.60(2)31022

3 0.31(1)31023 21.0(2)31023 21.06(2)31023 0.33(4)31023 20.94(4)31023

4 20.50(2)31024 1.9(3)31024 1.96(6)31024 20.6(1)31024 1.7(1)31024

5 0.91(3)31025 23.7(6)31025 23.9(2)31025 1.1(2)31025 23.3(1)31025

5 1 0.030~1! 20.053(6) 20.0533(4) 0.029~2! 20.0528(3)
2 20.25(1)31022 0.7(1)31022 0.699(5)31022 20.30(2)31022 0.65(2)31022

3 0.34(1)31023 21.2(2)31023 21.16(2)31023 0.44(4)31023 21.03(3)31023

4 20.55(2)31024 2.1(3)31024 2.15(5)31024 20.8(1)31024 1.85(5)31024

5 1.00(3)31025 24.2(6)31025 24.3(2)31025 1.4(2)31025 23.6(1)31025

8 1 0.047~1! 20.060(6) 20.0602(1) 0.046~2! 20.061(1)
2 20.35(1)31022 0.8(1)31022 0.817(5)31022 20.43(1)31022 0.77(1)31022

3 0.45(1)31023 21.4(2)31023 21.40(2)31023 0.62(2)31023 21.24(2)31023

4 20.72(2)31024 2.6(3)31024 2.58(4)31024 21.05(3)31024 2.24(4)31024

5 1.28(4)31025 25.1(6)31025 25.1(2)31025 1.95(5)31025 24.4(1)31025
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sults are reported in Table IV. We also performed dir
analyses of the coefficientsei ,ai , considering theg series
that can be obtained from Eqs.~40! and~41!. The results are
substantially consistent with those obtained by first estim
ing ēi and āi . In the case ofai they turn out to be more
precise; we also show them in Table IV~third column of
results!.

In e expansion we directly resum the expansions ofei and
ai reported in Appendix B. The results are also reported
Table IV and are in substantial agreement with the fix
dimension results. Fora1, we also perform a constraine
analysis that makes use of the available results fora1 in two
and one dimensions. Such a method was introduced in
@49# and generalized in Refs.@34,50#. In many instances it
has provided quite accurate results for critical quantities.
use the estimates ofa1 in two dimensions reported in Refs
@51,52#, a1520.0812(5), 20.1014(6), and 20.1313(9)
for N53,4,8, respectively. We also make use of the o
dimensional result@53#, a152(N21)2/(4N2). From the
analysis constrained in one dimension, in three dimens
04611
t
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we obtaina1520.0397(2) forN52 anda1520.0533(3)
for N55, while from the analysis constrained in two dime
sions we obtain a1520.0460(3) for N53, a15
20.0507(5) for N54, a1520.0621(2) for N58. Con-
straining the analysis both in two and one dimension,
obtain a1520.0458(1) forN53, a1520.0514(6) forN
54, a1520.0625(2) forN58. These results are compa
ible with those of Table IV.

TABLE V. Final estimates of the coefficientse1 anda1.

N e1 a1

1 20.0140(5)
2 0.0017~1! 20.041(2)
3 0.014~3! 20.046(1)
4 0.024~3! 20.051(2)
5 0.030~1! 20.0533(5)
8 0.047~1! 20.062(2)
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CALABRESE, PELISSETTO, AND VICARI PHYSICAL REVIEW E65 046115
Taking into account the above-reported results fore1 and
a1, we consider as final estimates the numbers reporte
Table V. The errors are rather conservative and are suc
include all the results we have obtained.

As already noted in Ref.@11#, e152a/(6g)1O(e3) and
a152gT /(6g)1O(e3). These relations are not satisfied
order e3, see Appendix B. Nonetheless, they still provi
very good approximations toe1 and a1. For instance~see
Ref. @1# for the estimates of the critical exponents!,
2a/(6g)520.013 77(8),0.001 85(10),0.0159(8), respec-
tively, for N51,2,3, where the error is related to the unc
tainty on the estimates ofa andg.

The coefficiente1 has also been computed forN51 by
Monte Carlo simulations@54#. The numerical data are we
described by2aeff(t)/@6geff(t)#, whereaeff(t) and geff(t)
are effective exponents determined from the specific heat
the susceptibility.

It is interesting to note that the signs ofai and ei are
strictly related to the signs of the amplitudesAE,T

1 and of the
exponentsa and gT . First, we observe that in the critica
limit the correlation functions are non-negative, i.
GE,T(x)>0. Indeed, the latticef4 model with nearest-
neighbor couplings is exactly reflection positive and, the
fore, the above-reported inequalities are rigorously true
any value of the couplings. At criticality, they should hold f
any model in the same universality class. Therefore, all m
ments are positive, i.e.,(xuxu2nGE,T(x)>0. If the correlation
functions have the scaling forms~31! and ~32!, this implies

AE,T
1 >0, ~21!nan>0. ~51!

For N>2, using Eq.~33!, we obtain

BE>0, ~21!nAE
1en>0. ~52!

Relations~51! are satisfied by our results, while Eq.~52! and
our resulte1.0 imply AE

1,0. Thus, althoughAE,T
1 is non-

universal, the positivity~unitarity in FT language! of the
theory fixes its sign.

As a final remark, note thata1 ande1 are very small. The
values ofa1 are quite smaller than what would be naive
expected. The nearest singularity in the complexy plane cor-
responds to the two-particle cut, thus at large dista
GT(x);uxuqexp(2uxu/jT8) with jT85jgap/2, wherejgap is the
exponential correlation length that determines the lar
distance exponential behavior of the fundamental two-po
function. Then, positivity ofGT(x) requires the second
moment correlation lengthjT to be smaller thanjT8 . As a
consequence, sincejgap'j ~see Sec. III A 1!, ua1u&1/4. But
this bound turns out to be much larger than the actual va
of a1.

2. Large-momentum expansion

We also compute the constantsEi and Ti of the large-
momentum behavior of f E,T(y). Matching the large-
momentum expansion of the two-loop expression
G̃E,T(q,t) with Eqs.~45! and ~46!, we obtain
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E1511
42N

81N
e1O~e2!, ~53!

E25221
2~51N!

81N
e1E22e

21O~e3!,

E3522
141N

81N
e1E32e

21O~e3!,

and

T1511
41N

81N
e1O~e2!, ~54!

T252
2~41N!

42N
1

2~41N!~20213N2N2!

~42N!2~81N!
e

1T23e
21O~e3!,

T35
2~41N!

42N
2

~41N!~56234N2N2!

~42N!2~81N!
e

1T33e
21O~e3!.

Moreover,

E221E3252
~N3214N22140N2432!

2~N18!3 1
N24

12~N18!
p2,

T221T3252
~N14!~N2114N1108!

2~N18!3 2
N14

12~N18!
p2.

~55!

The constantsE1 andT1 are in agreement with the results o
Ref. @11#. The divergence of the coefficientsT2 and T3 for
N→4 is related to the vanishing of theO(e) term in the
expansion ofa @55#.

The large size of the coefficients makes it difficult to r
sum the perturbative series. For the physically interest
case ofN52 we report the result obtained by settinge51
and give as error the size of the last coefficient. In this w
we obtain,E151.3(3), E2520.7(1.3), andE350.3(1.7)
for N51, and E151.2(2), E2520.6(1.4), E3
50.4(1.6),T151.6(6), T2529(3), T358.4(2.4) for
N52. Moreover, E21E350.0(2) and T21T3520.7(1)
for N52.

D. Interpolations of the structure factors

In Ref. @11# the authors discuss several approximate for
for f E,T(y). They present generalizations of the Fish
Burford @42# approximant for̂ ff&. These approximations
are quite crude and do not reproduce the full Fisher-Lan
behavior for largey. A better approach based on dispersi
theory was put forward by Bray@24#. Here, we will apply the
same method to the universal functionsf E(y) and f T(y).

A generalization of the arguments presented in Ref.@24#
gives the following representation forf T(y):
5-8
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f T~y!512
yT1

p
sinS pgT

2n D E
4SM

1

`

dx
x212gT /(2n)

x1y
FT~x!,

~56!

where FT(x) is the spectral function satisfyingFT(`)51.
We assume here that the only singularities off T(y) in the
complex plane are branch cuts on the negative real axis
that the leading one corresponds to the two-particle state
that the diskuyu,4SM

1 is free of singularities. Under this
assumption, the representation~56! is exact.

For genericFT(x), Eq. ~56! does not give the correc
Fisher-Langer behavior~46!. Indeed, fory→` we obtain
f T(y)'const1T1y2gT /(2n). We must thus require the con
stant to be zero. This gives the sum rule

T1

p
sinS pgT

2n D E
4SM

1

`

dx x212gT /(2n)FT~x!51, ~57!

which allows the determination ofT1 onceFT(x) is given.
Equation~56! applies also tof E(y) with the obvious re-

placements. However, the sum rule~57! requiresa.0 and
can thus be used only in the Ising case. Fora,0, Eq.~57! is
replaced by

E1

p
sinS pa

2n D F2n

a
~4SM

1 !2a/(2n)

1E
4SM

1

`

dx x212a/(2n)~FE~x!21!G51. ~58!

In order to obtain approximate expressions for the struc
factors, we must assume a specific form for the spectral fu
tion. For this purpose, we assume, as in Ref.@24#, thatFT(x)
gives the exact Fisher-Langer behavior on the cut. Explic
we consider

FT~x!511T2x2(12a)/(2n)Fcos
p~12a!

2n

1sin
p~12a!

2n
cot

pgT

2n G
1T3x21/(2n)Fcos

p

2n
1sin

p

2n
cot

pgT

2n G . ~59!

To completely determine the spectral function, we m
specify the constantsT2 andT3. We use here thee-expansion
results of Sec. III C. These estimates are not very precise
the interpolation is quite insensitive onT2 andT3 separately.
Indeed, what really matters is their sumT21T3 that is more
accurately determined. In order to test these interpolatio
we can compare the estimates ofT1 and ai—and, analo-
gously, ofE1 andei—with those of the preceding section
For N52, using T2529 and T358.4, we obtain T1
'1.56, a1'20.055, a2'0.008, which are reasonabl
close to the estimates reported before. Analogously, u
E2520.6 andE350.4, we obtainE1'1.00,e1'0.005, and
e2'20.0007, again in reasonable agreement with previ
results. In particular, the fact thatue1u!ua1u is correctly pre-
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dicted by the approximation. ForN51, using E25
22/3, E351/3, we obtainE1'1.20, e1'20.016, e2
'0.0019, in reasonable agreement with what is repor
above.

In Fig. 1 we reportf E(y) for N51 and in Figs. 2 and 3 a
graph of f E(y) and of f T(y) for N52. It is interesting to
note that forN52 the functionf E(y) varies slowly and dif-
fers from one only for quite large values ofy. Taking also
into account that the prefactor vanishes ast→0, theq2 de-
pendence ofG̃E(q,t) should be hardly visible in experiment
and in numerical Monte Carlo simulations. Moreover, in th
casef E(y)>1 for all y, so that, because of the inequalitite
~52!, there is an attenuation of the singular behavior for
creasingq, as generally expected.

IV. EXPERIMENTAL APPLICATIONS

In this section we briefly discuss the applications to so
physical systems.

FIG. 1. Universal functionf E(y) obtained using Eqs.~56! and
~59! for N51. We also report the large-y behavior, f E(y)
'1.199y20.087 25 and the small-y behavior, f E(y)'120.013 66y
10.001 467y220.000 219y3.

FIG. 2. Universal functionf E(y) obtained using Eqs.~56! and
~59! for N52. We also report the large-y behavior, f E(y)
'1.00y0.010 908 and the small-y behavior, f E(y)'110.001 71y
20.000 169y210.000 0243y3.
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As already mentioned in the Introduction, the crosso
exponentfT associated with the traceless tensor fieldTi j (x)
describes the instability of the O(N)-symmetric theory
against anisotropy@2–5#. It is thus relevant for the descrip
tion of multicritical phenomena, for instance, the critical b
havior near a bicritical point where two critical lines wit
O(N) and O(M ) symmetry meet, showing a critical behavi
with enlarged O(N1M ) symmetry, see, e.g., Refs.@6–8#.
Physical realizations of bicritical points are provided by a
tiferromagnets in a magnetic fieldH. For instance, in the
T-H plane uniaxial antiferromagnetic spin systems m
present two lines of continuous transitions, characterized
an Ising andXY critical behavior, respectively, that meet at
point, where the symmetry is enlarged to O~3!. The crossover
exponentfT is relevant to describe the behavior of the sy
tem in the neighborhood of the O~3! symmetric point, see
e.g., Ref.@8#.

Another interesting example of bicritical point appears
the recent SO~5! theory of high-Tc superconductivity@9#.
According to this theory, the SO~5! symmetry should be re
alized at a bicritical point, where two critical lines merg
one is related to the antiferromagnetic properties and is c
acterized by an SO~3! symmetry and the other is associat
with superconductivity and has U~1! symmetry. Actually, this
issue is still debated, since it is not clear whether the SO~5!
symmetric fixed point is really stable. On the one ha
Monte Carlo simulations reported in Ref.@22# support its
stability. On the other hand, Ref.@56# presents solid argu
ments showing that another fixed point, i.e., the tetracrit
decoupled fixed point, is stable. These two facts are not n
essarily in contradiction, since one cannot exclude the p
ence of two stable fixed points, although experience sugg
that this possibility is rather unlikely.

Many physical systems exhibit phase transitions cha
terized by the establishment of a density wave. The or
parameter of density waves in a uniaxial system is the c
plex amplitude f1, associated with the contributio
Ref1eiq0z to the density modulation, whereq0 is the wave-
length of the modulation. The critical behavior is then e

FIG. 3. Universal functionf T(y) obtained using Eqs.~56! and
~59! for N52. We also report the large-y behavior, f T(y)
'1.559y20.263 569 and the small-y behavior, f T(y)'120.0397y
10.0053y220.000 852y3.
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pected to be described by theXY universality class. Interest
ing examples in solids are charge-density wave systems,
e.g., Refs.@57,58#. In three-dimensional complex fluids th
density-wave phenomenon occurs at the nematic–smectA
phase transition, which corresponds to the establishment
one-dimensional mass-density wave along the direction
the orientational order. Beside the order parameterf1, also
higher harmonics, associated with the contributi
Refneinq0z to the density, are expected to show a critic
behavior, which is essentially induced by the critical beha
ior of the fundamental fieldf1. Indeed, according to the
theory reported in Refs.@11,18#, the average density modu
lation ^fn& associated with the wave vectornq0ẑ should be
proportional to ^f1

n&, thus showing a singular behavio
^f1

n&;tbn, where bn522a2fn and fn is the crossover
exponent associated with thenth-order anisotropy at theXY
fixed point. In the casen52, i.e., the second harmonic, th
relevant operator is the traceless tensor operatorTi j , cf. Eq.
~3!, thusb25bT . The same theory predicts that the leadi
critical contribution to the structure factor

Sn~q!5E d3x eiqx^fn~0!* fn~x!& ~60!

is proportional to

Gn~q!5E d3x eiqx^f1
n~0!* f1

n~x!&. ~61!

In the case of the second harmonic,G2(q)5GT(q), whose
scaling behavior has been determined in Sec. III. Some
perimental results have been reported in Ref.@17#, and re-
analyzed in Ref.@14#. The small value ofXT52a1 is crucial
to provide an explanation@11,18#, consistently with RG
theory, of the experimental results of Ref.@17#.

As discussed in Ref.@11#, the correlationsGE,T of qua-
dratic operators are also relevant in the description of cer
liquid and solids, where an effective coupling between
order parameter and elastic deformations occurs, and ma
measured by sound-attenuation experiments. In these
tems, for symmetry reasons, the lowest-order coupling is
pected to be linear in the strain and quadratic in the or
parameter. A more thorough discussion can be found in R
@11#.

Applications to polymers have been recently discussed
Ref. @59#.

APPENDIX A: LARGE-MOMENTUM BEHAVIOR FOR
THE BILINEAR CORRELATION FUNCTIONS

In this appendix, we compute the large-momentum beh
ior of the correlation function. We follow closely the discu
sion of Refs. @48,60# for the correlation function of the
field f.
5-10
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1. The energy correlation function

The basic ingredient of the calculation is the sho
distance expansion of the product of operatorsE(x
1y/2)E(x2y/2). Fory→0, see, e.g., Ref.@30#, this product
is equal to the sum of all the operators that are allowed
symmetries, multiplied byC-number coefficients, that tak
into account the short-distance behavior. The most sing
contribution comes from the operators of smallest dim
sion. In this case, neglecting the contribution related to
identity operator, it implies

E~x1y/2!E~x2y/2!

5C~y!E~x!1~ less singular contributions!.

~A1!

Now, let us consider the connected correlation funct
of l composite operatorsE(x), G( l )(p1 , . . . ,pl), and
its renormalized counterpart GR

( l )(p1 , . . . ,pl)
5Zt

lZf
2 lG( l )(p1 , . . . ,pl). Then, Eq.~A1! implies for p@m

GR
( l )~p,2p,0, . . . ,0!'C̃~p;m!GR

( l 21)~0, . . . ,0!, ~A2!
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FIG. 4. Feynman diagrams contributing in the four-loop comp
tation of the two-point functionsGE,T . The black blobs indicate the
insertion of the bilinear operators.
the
TABLE VI. For each diagramj contributing to the energy and tensor two-point function we report:
number of loopsl, the symmetry factorSj , the group factorsCj

E,T , and the expansion of the integralI j (y) in
fixed dimensiond53.

j l Sj
Cj

E

N

4Cj
T

N~N21!
(8p) l I j (y)

1 1 2 1 2 2

Ay
arctan

Ay

2
2 2 1 21N

3
4
3

I 1
2

3 3 1
2

(21N)2

9
8
9

I 1
3

4 3
2

3
21N

3
2(21N)

3

20.037682110.00160802y10.000209975y2

20.00012236y310.0000404108y4

20.0000116689y51O(y6)

5 3 1 21N

3
2(61N)

9

0.520.105903y10.0222193y220.00477681y3

10.00104957y420.000234591y51O(y6)

6 4 1
4

(21N)3

27
16
27

I 1
4

7 4
2

3
(21N)2

9
4(21N)

9
I 1I 4

8 4 1 (21N)2

9
4(61N)

27
I 1I 5

9 4 1 (21N)(81N)
27

2(21N)(81N)
27

20.026627710.0012789y10.000157474y2

20.000095736y310.000031929y4

29.260221026y51O(y6)

10 4 2 (21N)(81N)
27

8(41N)
27

0.2520.0601852y10.0132661y220.00292294y3

10.000651627y420.000147057y51O(y6)

11 4 1
2

(21N)(81N)
27

2(1616N1N2)
27

0.32246720.0786798y10.0175558y2

20.0039039y3

10.000 876 3y420.000 198 793y51O(y6)
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TABLE VII. Coefficients ēi , j and āi , j , cf. Eqs.~B4! and ~B5!.

i j ēi , j (81N) j /(21N)(12d j 0) āi , j (N18) j

1 0 2
1
4 2

1
4

1 1
6

1
3

2 0.0290678 0.058135820.0195433N
3 0.294120.0105012N 0.58820120.158869N20.044705N2

2 0 1
16

1
16

1 2
1

15 2
2

15

2 0.028000810.0208333N 0.056001610.00585959N
3 20.04612710.0223387N 20.092253710.0828459N10.0173899N2

3 0 2
1

64 2
1

64

1 71
3360

71
1680

2 20.017979820.0114583N 20.035959820.00137167N
3 0.0051739520.00217669N10.00231481N2 0.010347920.0333737N20.0056229N2

4 0 1
256

1
256

1 2
31

5040 2
31

2520

2 0.0073389310.0044494N 0.014677910.000299779N
3 20.00084290820.00212265N10.00162037N2 20.0016858210.0117321N10.00170808N2

5 0 2
1

1024 2
1

1024

1 3043
1774080

3043
887

2 20.0025360420.00149678N 20.0050720820.0000641563N
3 20.00039089820.0015352N20.000747354N2 0.00078179420.0037964N20.000501577N2
th
io

n

an-
where we have explicitly written the mass dependence of
short-distance coefficient. Since renormalized correlat
functions scale canonically, i.e.,

GR
( l )~p,2p,0, . . . ,0!5md22l f ~p/m!, ~A3!

we have

C̃~p;m!5m22Ĉ~p/m!. ~A4!

Renormalized correlation functions satisfy the Calla
Symanzik equation

Fm
]

]m
1b~g!

]

]g
2 lh2~g!GGR

( l )~p1 , . . . ,pl !

5m2s~g!GR
( l 11)~0,p1 , . . . ,pl !. ~A5!

wheres(g) is a RG function satisfyings(g* )522h and
h2(g)5h t(g)2hf(g). Applying the Callan-Symanzik
equation to the relation~A2! we obtain, settingg5g* ,

Fm
]

]m
2h2~g* !GC̃~p;m!50, ~A6!

and therefore, using Eq.~A4!, we have
04611
e
n

-

C̃~p;m!;m22~p/m!222h25m22~p/m!21/n. ~A7!

Now, using the above-reported results andZt /Zf;mh t2hf

;m1/n22 for g5g* , see Eq.~16!, we obtain

]2

]t2
G(2)~p,2p!5G(4)~0,0,p,2p!;m824/nGR

(4)~0,0,p,2p!

'm824/nC̃~p;m!GR
(3)~0,0,0!

;~p/m!21/nmd24/n;t212ap21/n. ~A8!

Integrating this equation twice with respect tot, we have

G(2)~p,2p!5a~p!1b~p!t1ct12ap21/n1o~ t12a!,

~A9!

wherea(p) andb(p) are unknown functions ofp. Compar-
ing this result with the scaling equations~32! and ~33!, we
obtain finally Eq.~45!.

2. The tensor correlation function

The calculation is analogous. The short-distance exp
sion of the productTi j (x)Ti j (y) is given by
5-12
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TABLE VIII. Expansion coefficientsx1 , x2, andx3 for ei andai .

x1 x2 x3

e1
1

12
(21N)(44113N)

12
2

7
72

e2 2
1

120
2402270N242N21N3

360

7
360

e3
1

840
235211176N1180N225N3

10080
2

1
240

e4 2
1

5040
180823072N2477N2113N3

151200

1
1080

e5
1

277 20
2339214208N1668N2217N3

1108800
2

1
4752

a1 2
1

12
222N

12

7
72

a2
1

120
220144N13N2

720
2

7
360

a3 2
1

840
2882128N29N2

10080

1
240

a4
1

5040
9041778N155N2

302400
2

1
1080

a5 2
1

277 20
2254421768N2125N2

3326400

1
4752
h

r-

e of

-

ar
ms
l
o

ams
Ti j ~x1y/2!Ti j ~x2y/2!

5CT~y!E~x!1~ less singular contributions!.

~A10!

Now, we consider the connected correlation function witl
fields E(x) and two fieldsTi j (x) with the indices summed
over, GT

( l )(p1 ,p2 ;q1 , . . . ,ql), and its renormalized counte
part

GT,R
( l ) ~p1 ,p2 ;q1 , . . . ,ql !

5ZT
2Zt

lZf
2 l 22GT

( l )~p1 ,p2 ;q1 , . . . ,ql !.

For p@m, we have

GT,R
( l ) ~p,2p;0, . . . ,0!'C̃T~p;m!GR

( l 11)~0, . . . ,0!.

~A11!

The coefficientC̃T(p;m) scales as in Eq.~A4! and satisfies
the RG equation

Fm
]

]m
22h281h2GC̃T~p;m!50, ~A12!

whereh285hT2hf . Therefore,
04611
C̃T~p;m!;m22~p/m!2222h281h25m22~p/m!2(11gT2a)/n.

~A13!

As in the energy case, we consider the second derivativ
GT

(0)(p,2p) with respect tot. For p@m, we have,

]2

]t2
GT

(0)~p,2p!5GT
(2)~p,2p;0,0!

;m822/n22fT /nGT,R
(2) ~p,2p;0,0!

'm822/n22fT /nC̃~p;m!GR
(3)~0,0,0!

;p2(11gT2a)/nt212a, ~A14!

where we have used the fact that, forg5g* , ZT /Zf
;mhT2hf;mfT /n22, see Eqs.~16! and~20!. Integrating this
equation twice with respect tot and using the scaling equa
tion ~31!, we obtain the large-momentum behavior~46!.

APPENDIX B: PERTURBATIVE EXPANSION OF THE
TWO-POINT FUNCTIONS GE,T

In order to compute the structure factor of the biline
fields, we determine the one-particle-irreducible diagra
with insertions of two operatorsE or Ti j and zero externa
legs. We use the susceptibilityx as inverse mass square, s
that tadpole diagrams can be neglected. Also, subdiagr
5-13



CALABRESE, PELISSETTO, AND VICARI PHYSICAL REVIEW E65 046115
TABLE IX. Expansion coefficientsx4 andx5 for ei andai .

e1 x4
211842348N27N2

32

x5
2(21N)(2411222596N2466N21N3)

24

e2 x4
451211420N135N2

1280

x5
(21N)(2170624278048N28148N21509N3)

5760

e3 x4
223112642726900N217885N2

4587520

x5
5861678081604936960N1160060792N218862854N321077019N412048N5

61931520

e4 x4
23708481719452N116023N2

27525120

x5
2100634163221133004544N2290766168N2213609246N312081479N423072N5

619315200

e5 x4
225256432962724481980N213348335N2

155021475840

x5
308409098086413778414828800N1961368439624N2141380542442N326987518685N412097152N5

10463949619200

a1 x4
213761764N1301N2114N3

64

x5
755222784N25692N221667N32100N4

96

a2 x4
2(3104112300N13185N21140N3)

5120

x5
210877442484736N126236N2132387N312316N4

23040

a3 x4
144563211966400N1440020N2117885N3

4587520

x5
5682810881262815488N21452256N2213472924N321114341N429216N5

61931520

a4 x4
2(33881888134540972N17018809N21256368N3)

440401920

x5
21703272678427719736448N190484812N21409316471N3136197264N41491520N5

9909043200

a5 x4
524443849614565788340N1853347495N2126696670N3

310042951680

x5

34179580035328114923763131008N2513765484268N22895119755607N3281461592926N421376256000N5

104639496192000
ti
o

,

oop
e

that correspond to diagrams of the two-point function^ff&
are subtracted at zero momentum. The diagrams contribu
up to four loops are drawn in Fig. 4. The structure factors
the bilinear fields can be expanded as

G~ ḡ,y!5uGE,T~u,q!5(
j 51

~21! l 21ulx l /2SjCj
E,TI j~q2x!,

~B1!

where the sum is over the graphs without tadpoles,l is the
04611
ng
f

number of loops of the graph,Sj the graph symmetry factor

Cj
E,T the group factor, andI j (q

2) the loop integral with unit
mass. In Table VI, we reportSj andCj

E,T .

We computed the coefficientsēi and āi to four loops in
the fixed-dimensions expansion. The expansion of the l
integralsI j (q

2) is reported in Table VI. In the calculation, w
used the results of Refs.@61,62#.

We also used the expression of the bare couplingu as a
function of the renormalized couplingḡ,
5-14
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u5m
48pḡ

~81N! F11ḡ1
27N21350N11348

27~81N!2
ḡ2

1
N3117.3632N21120.783N1315.831

~81N!3 ḡ31O~ ḡ4!G
~B2!

and the relation betweenx andm,

m2x5Zf~g!512
4~N12!

27~N18!2
ḡ220.106 993

N12

~N18!2
ḡ3

1O~ ḡ4!. ~B3!

Writing

ēi5(
j 50

ēi , j ḡ
j , ~B4!

āi5(
j 50

āi , j ḡ
j , ~B5!

we computed the coefficientsēi , j and āi , j up to j 53. They
are reported in Table VII.
a

v

a

er

.
ys

au

u

V.

04611
We computed the coefficientsei andai in e expansion to
three loops, i.e., to ordere3. The expansion of the integral
I 4(y) and I 5(y) was obtained by using the algebraic alg
rithm of Ref. @63#.

We write

ei5
N24

N18
x1e1

1

~N18!3 x2e21F ~N12!~N24!

~N18!3 x3l

1
~N12!

~N18!4 x4z~3!1
1

~N18!5 x5Ge31O~e4!, ~B6!

ai5
N14

N18
x1e1

N14

~N18!3 x2e21F ~N12!~N14!

~N18!3 x3l

1
1

~N18!4 x4z~3!1
1

~N18!5 x5Ge31O~e4!, ~B7!

wherel51.171 953 619 344 729 445. The coefficientsxi are
reported in Tables VIII and IX. Note that@11# to ordere2,
e1'2a/(6g) and a1'2gT /(6g). These relations do no
hold at ordere3.
n,

al
,

n
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