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We compute the two-point correlation functions of general quadratic operators in the high-temperature phase
of the three-dimensional ®f) vector model by using field-theoretical methods. In particular, we study the
small- and large-momentum behavior of the corresponding scaling functions, and give general interpolation
formulas based on a dispersive approach. Moreover, we determine the crossover e¥pomgsdciated with
the traceless tensorial quadratic field, by computing and analyzing its six-loop perturbative expansion in fixed
dimension. We findp1=1.184(12),¢+=1.271(21), andpr=1.40(4) forN=2,3,5, respectively.
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I. INTRODUCTION instance, the critical behavior near a bicritical point where
two critical lines with ON) and OM) symmetry meet, giv-

In nature, many physical systems undergo phase transing rise to a critical theory with enlarged 8¢ M) symme-
tions belonging to universality classes of theN)(vector try, see, e.g., Ref§6—8]. This bicritical behavior has been
models. Their universal critical properties can be determinedhe object of new studies quite recently, since it appears in
theoretically by considering thé* Hamiltonian the S@5) theory of superconductivit}9], and has been ob-

served experimentally in organic conductddd]. As dis-
cussed in Ref[11], the correlation functionsGg(x—Y)
H:f dox =(E(X)E(y)) and Gr(x—y)=(T;;(\)Tij(y)) are relevant
in the description of strain-strain correlations in certain lig-
uids and solids, where an effective coupling between the
whereja(x) is anN-component real field. Various computa- order parameter and the elastic deformations occurs. More-
tional methods, supported by renormalization-grdiyG) over, in the special casBl=2, the traceless tensor field
theory, have provided accurate determinations of several uniF;(x) is related to the second-harmonic order parameter in
versal quantities; see, e.g., REt] for a recent comprehen- density-wave systems, whose critical behavior belongs to the
sive review. Among others, we should mention the criticalXY universality class, see, e.g., Ref41-13. Experimen-
exponents, the equation of state, and the correlation fundally, such behavior is observed at the nematic—sméctic-
tions of the order parameteb(x). However, for some ex- transition in liquid crystal§11,12,14-18 In these systems
perimental systems one is also interested in the behavior dhe structure factor of the secondary order paranigjehas
correlation functions describing the critical fluctuations of Peen measured using x-ray scattering techniqugs18.
secondary, quadratic local fields. Due to the symmetry of thd he crossover exponem; is also relevanf19] in the de-
theory, there are two independent quantities that are quécription of crossover effects in diluted Ising antiferromag-
dratic in the fundamental fiel&(x): one is the local energy nets W't,hn'fOId degen_erate 9“0“”0' std0], for instance, in
density some d!luted magnetic semlponductors such as @dn,Te.
In this paper, we determine the crossover exporgnt
E(x)=¢(X)- d(X), 2) Such a quantity has already been obtained in the framework
of the e expansion to three lood21], from the analysis of
which is ON) invariant; the other one is the anisotropic high-temperature expansiop8] for N=2,3, and by means

second-order traceless tensor of a Monte Carlo simulation22] for N=5. Here, we con-
L sider the alternative field-theoretic@dT) method based on a
_ N s T3 " fixed-dimension expansion in powers of the zero-momentum
Ti00=¢1006;(x)= 9y N¢(x)-¢(x). ©) quartic coupling[23], and perform a six-loop calculation of

¢+ . For the physically interesting cashis=2,3,5 we obtain
The crossover exponefi; associated with the traceless

tensor field T;;(x) describes the instability of the ¢$1=1.18412) (N=2),
O(N)-symmetric theory against anisotrop®-5]. It is thus
relevant for the description of multicritical phenomena, for ¢r=1.27%21) (N=3),
$r=1.404) (N=5). 0)
*Email address: Pasquale.Calabrese@df.unipi.it
"Email address: Andrea.Pelissetto@romal.infn.it We also consider the correlation functio@:z(x) and
*Email address: Ettore.Vicari@df.unipi.it G+(x) in the high-temperature phase. In the critical limit, the
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Fourier transformG+(q) obeys a scaling law that is analo- !I- THE CROSSOVER EXPONENT ASSOCIATED WITH
gous to that of the fundamental correlation function, i.e., THE TENSOR COMPOSITE FIELD

A. Zero-momentum scaling behavior

~ — ATt 22

Gr(q.h)=Art (076, © The zero-momentum behavior of correlation functions in-
wheret=(T—T.)/T, is the reduced temperaturg;=2¢,;  volving generic local operator€)(x), such asg(x) and
—2+a is the tensor susceptibility exponent, agds the  Tij(X), can be obtained from the free energy in the presence
second-moment correlation length computed from the two©f an external fielch, coupled withO(x). Indeed, the sin-
point function of the order parameter. The same scaling bedular part of the free energy scales[&$
havior hqlds for.the correlation funf:tioﬁsE(q,t) of systgms Fsingoctz‘“f(h/t'3+ 7 ho lt%0), (9)
in the Ising universality class, witlw replacing vy, i.e.,
éE(q,t)zAgt‘“fE(ngz). For N=2, however,a is nega- Whereh is the magnetic field ang,, is the crossover expo-
tive and an additional background term should be taken int@ent. Then, by differentiating with respecthg, one obtains

account. In this case, in the critical limit, we have the zero-momentum correlations and the RG relations
Ge(d,t)=Be+ B sind A1) =B+ ALt *Fe(q2€2). (6) Po=2-a=¢o,
’}/0:_2+a+2¢0, (10)

The background terrB¢ is the dominant one and the singu-
lar part vanishes at criticality. In this case, by using positivity
(unitarity in FT language arguments, one may also show
that A <0, as observed in experiments.

In this paper we extend the two-lo@pexpansion compu-
tation of Refs.[11,18. We compute the universal scaling
functionsf(q2£?) andf+(q2£?) using thee expansion and
the expansion in fixed dimensiah=3. First, we determine
the small-momentum behavior to four loops in the fixed-
dimension expansion and to three loopseiexpansion. In
particular, we obtain accurate estimates of the experimentally
relevant ratiosXE,ngéTlgz, where &g 1 is the second-

where the exponentg,, and vy, describe, respectively, the
critical (singulaj behavior of the averageg(x))~|t|# and
of the susceptibilityy o==,{O(0)O(x)).~t~ 0.

In this section we compute the crossover expongqt
associated with the tensor fielg, (x) in the fixed-dimension
FT framework, by performing a six-loop perturbative expan-
sion. Of course, the crossover exponent associated with the
energy densitye(x) is trivial, i.e., pg=1 andyg= «.

B. The fixed-dimension expansion: Generalities

moment correlation length computed fra@ 1(x) or from In the fixed-dimension FT approach, one renormalizes the
its singular part ifa is negative. For instance, fot=1, we  theory by introducing a set of zero-momentum conditions for
find the two-point and four-point one-particle irreducible correla-
tion functions
Xg=0.01405), ()
j FP(p)=8,Z, (P +p?+0(pY], (D)
and forN=2,
D (0)=mZ,%93(8; 8+ 6wy + 8y o), (12
XE: _0.00111), XT:0-04](2)- (8) |]k|( ) 1) 93( ij Ykl ik @jl il ]k) ( )

, wheree=4—d andd is the space dimension. They relate the
(We shall later comment on the negative value X4f.)  massm and the zero-momentum renormalized coupling

Moreover, we study the Iarge-m_omentum behavipr of thgpe corresponding Hamiltonian parametemndu as
structure factors and construct interpolations valid for all

momenta by using the dispersive approach applied to uszgzu(g)z¢(g)—2_ (13
(#(0)a(x)) by Bray[24].

The paper is organized as follows. In Sec. Il we report thdn addition, one introduces the functi@h that is defined by
computation of the crossover exponeht to six loops in the  the relation
fixed-dimension expansion and compare our results with the (12) .
existing theoretical and experimental estima®@sc. |1 D). In Ii(0)= 6;Z4(9) 7, (14)
Sec. lll we report the computation of the structure factors. In 12y S _ .
Sec. Il A we briefly summarize the expected behavior of the'Vnere I'-“(p) is the one particle irreducible two-point
structure factors in the critical region and set our notationsfunction with an insertion of the operatgib®.
In Sec. |1l B we explain our FT calculation, whose results are  The critical theory is obtained by settirgy=g*, where
presented in Sec. IlI C. In Sec. 11l D we finally give approxi- 9% is the nontrivial zero of thes function
mate expressions for the structure factors by using a disper-
sive approach. In Sec. IV we briefly discuss some physical B(g)= ‘7_9 . (15)
systems where our results can be applied and compared with Jam
experiments. Appendix A discusses the large-momentum be-
havior of the structure factors. Details of the perturbativeThe standard critical exponents are then obtained by evalu-
calculation are reported in Appendix B. ating the RG functions

046115-2



CRITICAL STRUCTURE FACTORS OF BILINER . .. PHYSICAL REVIEW E 65 046115

dlnz, 2
77¢(9):m ) Aijk|:5ik5j|+5i|5jk—ﬁ5ij5k|a (19
u
alnz, so thatZ{(0)=1. Then, we compute the RG function
)= 2o (16)
u _dInZy| dinz; 5
at the fixed poing*, i.e., 7m(9)= dlnm U_B 9) dg 20
— *
7= 14(97), and »1= 71(g*). Finally, the RG scaling relation
1
;:2+77t(g*)_77¢(9*)- (17) dr=2+nr—n)v (21

In three dimensions these RG functions are known to si@llows us to determiner.

loops for generic values ¢ [25,26. ForN=0,1,2,3, seven-

loop series forp, and 5, were computed in Ref27]. C. The fixed-dimension expansion: Six-loop results

In order to evaluate the crossover expongptassociated ) o h lculation i

with the operatofT;;(x), we define the renormalization func- We computedl's(0) to six loops. The calculation is

tion Z+(g) from the one-particle irreducible two-point func- rather cumbersome, since it requires the evaluation of 563

tion T'{?)(p) with an insertion of the operatdr; , i.e., we set Feynman diagrams. We handled it with a symbolic manipu-
lation program, which generates the diagrams and computes

F(TZ)(O)” =25 l(g)AijkI , (18  the symmetry and group factors of each of them. We used the
w numerical results compiled in Ri28] for the integrals as-
where sociated with each diagram. We obtained

—, 2(6+N) —,18.312844 3.433 27| —0.216 745 881>

7O =95 N9 3+ N2 ¢ BTN)°
, 2140799 3% 37.573 4081+ 1.036 273 817 +0.004 342 568"
9 (8T N)*
_, 1340.075-416.716 5K +17.622 62812~ 0,911 280 561° ~ 0.050 833 74R*
B (8+N)°
_ 15651.266- 5665.6518I + 433.687 1M2+1.067 550 N*+0.679 1055814+ 0.031 393 00M5
+g > +o(g"),
(8+N)
(22

where, as usual, we have introduced the rescaled cougling relations (10) and (21). For N=2, we obtain[32] ¢
defined by —1.1764),1.1783), B;=0.8216),0.8255), and 7y
=0.3552),0.3583), where, for each exponent, we report

48 —
g= 8rNY (23 TABLE I. Critical exponents associated with the tensor field
Tii(X).

Field-theoretical perturbative expansions are divergent, and N Al Br YT
thus, in order to obtain accurate results, an appropriate re- 1.18412) 0.83012) 0.35425)
summation is required. We use the method of R29] that 3 1.27121) 0.86321) 0.41(4)
takes into account the large-order behavior of the perturba- 1.354) 0.904) 0.458)
tive expansion, see, e.g., R¢80]. Mean values and error 5 1.4(14) 0.9(14) O'ng)
bars are computed using the algorithm of R&fl]. 8 1'534) 0‘94(4) 0'61(8)

Given the expansion ofi;(g), we determine the pertur- 16 1'_756) 0:9&6) 0_'77(12)

bative expansion of(g), B1(g), and y(g), using the
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the estimate obtained from the direct analysis and from the In order to obtain a conservative estimate, we have thus
analysis of the series of the inverse, i.e., fromp{(Q), etc.  decided to take as estimate ¢f the weighted average of the
The two estimates obtained for each exponent agree withidirect estimates and of the estimates obtained ugipgnd
error bars, but, with the quoted errors, the scaling relations,; together with the scaling relatiofi37]. The (very conser-
(100 are not well satisfied. For instance, using  vative) error is such to include all estimates. The other ex-
=0.67155(27)(Ref. [33]) and 57=0.823(6) we obtainpr  ponents are dealt with analogously. The final results for sev-

=1.1926), while using the same value of and yr  eral values ol are reported in Table I.
=0.3565(30) we have;=1.1855(15). These two estimates

are slightly higher than those obtained from the analysis of

¢T(_g) and 1+(g). Clearly, the errors are somewhat under— D. Comparison with previous results
estimated, a phenomenon that is probably connected with the

ﬂonanalytiCity[34—Sq of the RG functions at the fixed pOint The exponentﬁ_r can also be Computed in theexpan_
g*. sion. Three-loop series were derived in Réfl],

,N3+24N?+ 68N
+ € 3
2(N+8) 4(N+8)
o NP+ 48N*+ 788N+ 347N+ 5024N — 48N (5N + 22)(N+8) {(3)
+
8(N+8)°

¢T:1+E

+e

O(e). (24)

The coefficients of this series decrease rapidly; for instance, Experimental estimates ap; are reported in Refl39].

we have We mention the experimental result,=1.17(2) for the (2
—1+1) bicritical point in GdAIG [40]. The (3—2+1)
¢1(N=2)=1+0.1e+0.06¢— 0.007 358 98>+ O( %), bicritical behavior has been studied in Mn&1], obtaining

(25) $1=1.279(31). The experimental results obtained for a
nematic—smectié transition reported in Refl17] are B+
$r(N=3)=1+0.136 364+ 0.083 95@%+ 0.000 99%°> =0.76(4) andy;=0.419).
4
+0O(e), (26 IIl. THE STRUCTURE FACTOR OF THE BILINEAR

. . . FIELDS IN THE HIGH-TEMPERATURE PHASE
for N=2 and 3, respectively. Thus, any resummation gives

estimates that do not differ significantly from those obtained A. Scaling behavior

by simply settinge=1. For N=2 and 3 we obtaingy The two-point correlation function of the fundamental
~1.15 and 1.22, in reasonable agreement—keeping into a

count that these are three-loop results—with the estimates illeld’ "?"G(X) %<¢(0)' ¢(Xl>’ N 9f cc.entral importance be-

Table I. They are also in agreement with the estimate of Refcause its Fourier transfor®(q) is directly related to the

[14] that reportsp=1.16(7) forN=2, which has been ob- Scattering intensity in scattering experiments. For0™, its

tained by analyzing the san@( %) series and the two-loop asymptotic behavior is given Hy2,43

series calculated in the framework of the fixed-dimension ~ . 5.2

expansion. G(q)=C "t "(q°¢), (28
The exponeni has also been computed in theN1éx-

pansion[38] for d=3 whereC™ is the amplitude of the magnetic susceptibility and

the functionf(y) is universal. Taking the second-moment

32 1 correlation length
d)T—Z—m'FO W) (27)
R &(q)
For N=16 it gives ¢;=1.80, which agrees with the FT re- = — = -G(0)! (29
sult of Table I. 2d S G(x) 9? =0
The exponentp has been estimated by high-temperature X

expansion techniques in RdB], obtaining ¢+=1.175(15)

for N=2 and ¢+=1.250(15) forN=3, in agreement with as length scale, the small-momentum behaviorf @f) is
the FT estimates. FOd=5, the exponents; has also been f(y)=1/(1+y)+O(y?), with very smallO(y?) corrections.
determined by means of a Monte Carlo simulati@d], ¢ Theoretical results for the correlation functi@®{q) are re-
=1.387(30). viewed, e.g., in Ref[1].
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In this section we study the scaling behavior of the two- &

G
point correlation functions of the bilinear fields(x) and WEVT(q,t)E%= — e A 1t YETWE 1(g%€P)
Tij(x). Similar to the specific heat, which is given by the
zero-momentum component of the two-point function X[1+O(t4 t1+7emn)], (34)

Ge(q,t), the asymptotic behavior @b 1(q,t) for t—0" is
not as simple as that of the fundamental two-point functionwhere
Indeed, in the scaling limit—0",g?>—0 with g2¢&? fixed,

RG theory predicts v,
yp Wer(Y)=fex(y)+ - —yler()=1+0(y) (39

éE,T(qat) =Bg[1+0(1)]
+AL 1t ETTE (282 [1+0(tY)], (30)

is another universal function.

1. Small-momentum behavior

whereBg 1 andA{ ; are nonuniversal constanfg; 1(y) is a At small momentum, i.e., foy=q’¢*<1, the scaling
universal function satisfyinge +(0)=1, andA is the expo- ~ functionsfg r(y) behave as
nent related to the leading irrelevant operator. As amply dis-
cussed in textbooks—seg, e.g., R[@O]—th_e presence of fe(y)=1+ 2 ey, (36)
the background termBg in the asymptotic behavior of n=1
Ge(q,t) is related to the need of an additive renormalization.
One may easily see that the same argument applies to the
two-point functionG+(q,t) of T;; .

Since yt>0 for all N=2, the leading behavior of the ) .
tensor two-point function is determined by the singular termUsing Eq.(35), these expansions can be related to those of
depending on the scaling functidr(g?£?), the scaling functionsvg 1(y),

fT<y>=1+n§l any". (37)

G1(q,t)=ATt "Tf(q2H)[1+O(t*)+O(t"M)]. (31 WE(y)=1+n§=)l ey", (39)

The background terrB; gives subleading corrections of or- _
dert?T, that turn out to be more relevant than the standard wr(y)=1+ >, ay". (39
scaling corrections of order®. Indeed, for the physically =t
relevant casedN=2,3, one finds thaty;<<A (A~0.53 for

, Indeed, it is immediate to obtain
N=2 andA=~0.55 forN=3, see, e.g., the results reviewed

in Ref. [1]). The difference decreases Ms-, since both _ onv
yr andA converge to 1 with the sameN./correction. e,=e,l 1+ T) (40)
The same thing holds for the energy two-point function in
the case of the Ising universality class for whiehs posi- 2Ny
tive, =0.1199(7)(Ref.[44)), i.e., a,=a,| 1+ _> (41)
YT

Ge(q,)=ALt *fe(g?EH)[1+0(t*)+0O(t")], (32  Simple arguments based on perturbation theory suggest that
the convergence radiug; of the small-momentum expan-
whereA~0.53, see, e.g., Ref45]. On the other hand, for sions is determined by the two-particle cut. The singularity in
the O(N) vector models withN=2, sincea<0, the back- the complex plane closest to the origin is expected tybe
ground termBg gives the leading behavior of the energy =—43§.|: where Sy =£%/£5,, and &g is the exponential
two-point functionGe(q,t), correlation length that determines the large-distance expo-
nential behavior of the fundamental two-point function.
Therefore,R,=4S,,. For the ON) vector models,Sy; is

Ge(0,1)=Be+ ALt *fe(g?EH)[1+O(t*)]+O(1). very close to 1, so thatR,~4. For example, S,
(33 =0.999601(6) for the Ising universality clagd4], Sy,

=0.999592(6) for theXY universality class[33], Sy,

In these cases, the singular part vanishestfe0 and is  =0.99959(4) for the Heisenberg universality clp48], and

usually responsible for a cusplike finite maximum in the SPe-s! —1—0.004 590N + O(1/N2) in the largeN limit [46]. As
cific heat at the critical point, as it is observed in experiments, consequence, far— o

and in lattice models. This requires the nonuniversal constant
A¢ to be negativésee the discussion in Sec. I ¢.1

In order to single out the singular behavior, one may con-
sider the derivative with respect to the reduced temperéature

€n+1 8n+1 €nt1 Anyn L
€n an €n ap 4

(42)
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The constant®, anda, are related to the universal ratios  TABLE Il. Estimates of the coefficients; for several values
xE‘ngéTlgz introduced in Refd.11,18), whereég 1 are the  of N.

second-moment correlation lengths associated with the sir — —— —— —— ——
gular part of the energy and of the tensor two-point func-N e; ele; esle, esles esle,
tions, respectively. More precisely, #r >0, the correla-

. . . o . 1 —0.170(5) —0.206(1) —0.221(1) —0.229(1) —0.234(1)
t~|on length is defined by EQq(29), replacing G(q) with 2 —0.155(5) —0.199(1) —0.216(2) —0.226(2) —0.232(2)
Ge,1(0). If the exponent is negative, then 3 —0.142(5) —0.193(2) —0.213(2) —0.222(2) —0.230(3)
5 4 —0.133(6) —0.189(3) —0.211(2) —0.222(3) —0.228(3)
~ _,9Ge(a) 5 —0.126(6) —0.186(3) —0.209(3) —0.221(3) —0.228(4)

2_ _ 17°E
¢e=~(Ge(0)=Be) o2 |, 43 4 —0.111(5) —0.180(3) —0.206(3) —0.219(4) —0.227(4)

gs=0

The universal ratioXg and Xy are given byXg=—e; and At the fixed pointg*, the functionsWe 1(g.y) differ from
Xr=—-ay. We 1(q,t), defined in Eq.(34), by a multiplicative factor
independent of q. Therefore, the scaling functions
We 1(9,y), defined in Eq(35), are given by

The large-momentum behavior of the fundamental corre-

lation function is given by the Fisher-Langer form{i7], ~ Weq(9.y)

2. Large-momentum behavior

We 1(9,Y) We (9.0 (49
1 Az As
fW~ =5\ i T | (449 Note that the zero-momentum functiolsg +(g,0) are re-
y y y lated to the exponentge 1 by the relation
One may derive a similar expression for the correlation func-
tions of the bilinear fields. The large-momentum behavior of BT im B(g) din)Ve +(9,0 _ (50)
the structure factors can be studied by performing a short- Voo glg dg

distance expansion of the two-point functio@s(x) and
G+1(x). Following the method outlined in Reff48], we ob-
tain the corresponding asymptotic expansionsyferx,

C. Field-theoretical results
1. Small-momentum expansion

E, = We compute the small-momentum expansion of the struc-
y(1-a)(21) +y1/(2v) , (49 ture factors to four loops in the fixed-dimension approach
and to three loops in the expansion.

In the fixed-dimension approach, we first determine the

. (46)  expansion in powers af of the coefficient®; anda; defined
in Egs.(38) and(39). The explicit expressions are reported in
Appendix B. In order to obtain numerical estimates we use
The derivation of these formulas is reported in Appendix A.the same resummation procedure outlined in the preceding
Notice that for the Ol) vector models witiN=2, since«a section. Our numerical results are presented in Tables Il and

1+

fe(y)~Eqy /(2"

T, T3

1+ y(=ai@y) + y @)

fr(y)=Tyy 77/"

<0, fg(y) increases ag— . lll. Note that, as expected, the raties, /e, anda;,,/a;
quickly approach—1/4. The corresponding coefficients
B. Field-theory calculations: Generalities anda; are obtained by using the relatio®0) and(41). For

Ftpe exponeni we use the same values reported bef&d,
while for y we use the results of Table I. In the caseaph
large part of the uncertainty is due to the error in the expo-

nent y; that enters the relation betweapanda;. The re-

Because of the presence of the background term, the
calculation of the scaling functiorfg(y) andf+(y) requires
some care. First, we define the dimensionless functions

gE,T(g!y)EUGE,T(QItvu)v (47) _
TABLE lll. Estimates of the coefficients; for several values
where g is the four-point renormalized coupling. Then, in of N.
order to eliminate the constant additive renormalization ternm; — —— —— —— ——
we consider the derivative with respectrtoof Ge +(g,y), N ay azlay ag/a, azlaz as/a,

2 —0.203(2) —0.224(2) —0.232(1) —0.236(1) —0.239(1)

3 —0.208(2) —0.226(1) —0.234(1) —0.238(1) —0.240(1)

" 4 —0.213(2) —0.228(1) —0.235(1) —0.239(1) —0.241(1)
5 —0.216(1) —0.230(1) —0.236(1) —0.240(1) —0.242(1)

. zyﬁgE;;g'y)_ (48 8 —0224(1) —0.235(1) —0.239(1) —0.242(1) —0.244(1)

J
We 1(9,y) = ma_ng,T(g!y)

G ,
— B(g) E,;(g y) _
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TABLE IV. Results of the coefficients; anda; for several values oN and from various analyse¢a)
(d=3) by using the fixed-dimension results fgranda; , and by directly analyzing the series far; (b) (e
expan by resummation of the three-loapexpansion.

N [ € (dzs)fromgi a; (d:3)fromgi a; (d=3)girect e (e expan a; (e expan
1 —0.0137(2) —0.0145(11)
0.147(3)x10°2 0.17(2)x 102
—0.219(4)x10°3 —0.26(3)x10°3
0.38(1)x 104 0.47(6)x 104
—0.71(1)x10°® —0.9(1)x10°°

2 0.00171) —0.042(2) —0.042(1) 0.002) —0.041(2)

—0.017(1)X10°2 0.530(3)x10°2  0.52(1)x10°2  0.00(3)x10°2  0.48(3)x10 2
0.024(2)x10° % —0.85(1)x10°2 —0.84(3)x10° % 0.00(5)x10° % —0.75(6)x10°°
—0.041(2)x10°4  1.5(2)x10 * 1.5(1)x 104 0.0(1)x10™* 1.3(1)x 1074
0.076(4x10°° —3.0(2)x10°° —3.0(2)x10°° 0.0(2)x10°° —2.6(2)x10°°

0.0152) —0.047(4) —0.0465(8) 0.01) —0.045(1)
—0.14(2)x10°2 0.59(5)x10°2  0.59(1)x10°2 —0.13(3)x10 2 0.54(3)x10 2
0.19(2)x10° %  —0.96(9)x10° % —0.96(2)x10° % 0.19(5)x10°°% —0.85(5)x10 2
—0.32(4)X10°%  1.8(2)x10°%  1.75(7)x10°% —0.3(1)x10*  1.5(1)x10°4

0.6(1)x10°° —3.4(3)X107° —3.4(2)x10°° 0.6(2)x10°° —2.9(2)x10°°
0.0261) —0.05(1) —0.0500(6) 0.02@) —0.049(1)

—0.23(1)x10°2  0.63(9)x10°2  0.645(5)X10°2 —0.22(3)x10°? 0.60(2)x10 2

0.31(1)x10° %  —1.0(2)x10° % —1.06(2)x10° % 0.33(4)x10° % —0.94(4)x10 3

—0.50(2)x10°%  1.9(3)x10°%  1.96(6)x10°* —0.6(1)x10 %  1.7(1)x10°4
0.91(3)X10°°  —3.7(6)x10°° —3.9(2)x10°° 1.1(2)x10° —3.3(1)x10°°

5 0.0301) —0.053(6) —0.0533(4) 0.02®) —0.0528(3)
—0.25(1)X10°2  0.7(1)x10°2  0.699(5)x10°2 —0.30(2)<10°? 0.65(2)x10 2
0.34(1)x 1073  —1.2(2)x10°% —1.16(2)Xx10°° 0.44(4)x10°3 —1.03(3)x10°3

—0.55(2)x10°%  2.1(3)x10°%  2.15(5)x10°% —0.8(1)x10°4  1.85(5)x 10 *
1.00(3)X10°°  —4.2(6)x10°° —4.3(2)x10° 1.4(2)x10°° —3.6(1)x10°°

8 0.0471) —0.060(6) —0.0602(1) 0.04@) —0.061(1)
—0.35(1)X10°2  0.8(1)x10°2  0.817(5)X10 2 —0.43(1)x10°2 0.77(1)x10 2
0.45(1)x10° %  —1.4(2)x10° % —1.40(2)x10° % 0.62(2)x10° % —1.24(2)x10 3

—0.72(2)X10° % 2.6(3)x10°4  258(4)x10°% —1.05(3)x10 4 2.24(4)x10*
1.28(4)<10°°  —51(6)x10° —51(2)x10°° 1.95(5)x10°° —4.4(1)x10°°

N
O WONRPEPOAODNNONRPOOPDNONREPOOPNODNREPRPOOMWONRPEOODWOWDN PR

sults are reported in Table IV. We also performed directwe obtaina;=—0.0397(2) forN=2 anda;= —0.0533(3)
analyses of the coefficients,a;, considering they series  for N=5, while from the analysis constrained in two dimen-
that can be obtained from Eqggl0) and(41). The results are  sions we obtain a;=—0.0460(3) for N=3, a;=
substantially consistent with those obtained by first estimat-- 0.0507(5) forN=4, a,;=—0.0621(2) forN=8. Con-

ing e, anda;. In the case ofy; they turn out to be more straining the analysis both in two and one dimension, we
precise; we also show them in Table Kthird column of obtaina;=—0.0458(1) forN=3, a;=—0.0514(6) forN
results. =4, a;=—0.0625(2) forN=8. These results are compat-
In e expansion we directly resum the expansions;&nd  iple with those of Table IV.
a; reported in Appendix B. The results are also reported in
Table IV and are in substantial agreement with the fixed-
dimension results. Foa;, we also perform a constrained
analysis that makes use of the available resultafon two

TABLE V. Final estimates of the coefficientgs anda;.

and one dimensions. Such a method was introduced in Ref N e -

[49] and generalized in Ref$34,50. In many instances it 1 —0.0140(5)

has provided quite accurate results for critical quantities. We 2 0.00171) —0.041(2)
use the estimates @f; in two dimensions reported in Refs. 3 0.0143) —0.046(1)
[51,52, a;=—0.08125), —0.10146), and —0.1313(9) 4 0.0243) —0.051(2)
for N=3,4,8, respectively. We also make use of the one- 5 0.03G1) —0.0533(5)
dimensional resul{53], a;=—(N—1)%/(4N?). From the 8 0.0471) —0.062(2)

analysis constrained in one dimension, in three dimensions
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Taking into account the above-reported resultsepand 4—N
a;, we consider as final estimates the numbers reported in Ei=1+gne’ O(€?), (53
Table V. The errors are rather conservative and are such to
include all the results we have obtained. 2(5+N)

As already noted in Ref11], e;= — a/(6y) + O(€°) and E,=—2+———€e+E,e’+0(e),

a;=— y1/(6y) +O(€). These relations are not satisfied to ? 8+N

order €%, see Appendix B. Nonetheless, they still provide

very good approximations te; and a,;. For instance(see E.—2— 14+N €+ Eape?+O(3)
Ref. [1] for the estimates of the critical exponents 8 8+N 32 ’

—al(6y)=-0.013778),0.001 85(10),0.0158), respec-
tively, for N=1,2,3, where the error is related to the uncer-and
tainty on the estimates af andvy.
The coefficiente; has also been computed fbr=1 by T,=1+ 4+N e+0(e?), (54)

Monte Carlo simulation$54]. The numerical data are well 8+N

described by— ag(t)/[ 6ver(t) ], Where ags(t) and yeu(t)

are effective exponents determined from the specific heat and 2(4+N) 2(4+N)(20—13N—N?)

the susceptibility. =N T aeNnAEeN) €
It is interesting to note that the signs ef and e; are

strictly related to the signs of the amplitudag  and of the +T5e?+0(€%),

exponentsa and y;. First, we observe that in the critical

limit the correlation functions are non-negative, i.e., 2(4+N) (4+N)(56—34N—N?)

Ge1(x)=0. Indeed, the latticep* model with nearest- 354N (4—N)2(8+N)

neighbor couplings is exactly reflection positive and, there-

fore, the above-reported inequalities are rigorously true for +Taee?+0(€%).

any value of the couplings. At criticality, they should hold for
any model in the same universality class. Therefore, all moMoreover,
ments are positive, i.e3,|x|*"Gg 1(x)=0. If the correlation

functions have the scaling forn{81) and(32), this implies (N°—14N2—140N-432 N—4

2

Fat Eer= = 2(N+8)° TTaNTe) T
Af =0, (—1)"a,=0. (51 ,
rop_ (NTHN+1N+109  N+a
For N=2, using Eq.(33), we obtain 2% 2(N+8)° 12(N+8) (')
55
Be=0, (—1)"Afe,=0. (52

The constant&,; andT; are in agreement with the results of
Ref.[11]. The divergence of the coefficients, and T for
Re|ati0ns(51) are Satisfied by our results, Wh”e H&Z) and N—4 is related to the Vanishing of tf@(e) term in the
our resulte;>0 imply AZ <0. Thus, aIthoughA,;T is non-  expansion ofw [55].
universal, the positivity(unitarity in FT languagke of the The large size of the coefficients makes it difficult to re-
theory fixes its sign. sum the perturbative series. For the physically interesting
As a final remark, note that, ande; are very small. The case ofN=2 we report the result obtained by settiag 1
values ofa, are quite smaller than what would be naively and give as error the size of the last coefficient. In this way
expected. The nearest singularity in the complgtane cor-  we obtain, E;=1.3(3), E,=—0.7(1.3), andE;=0.3(1.7)
responds to the two-particle cut, thus at large distancgor N=1, and E;=1.2(2), E,=-0.6(1.4), E,
Gr(x)~|x|%exp(—[X/&r) with £1=_Egd2, Whereéy,,is the  =0.4(1.6), T;=1.6(6), T,=—9(3), T3=8.4(2.4) for
exponential correlation length that determines the largeN=2. Moreover, E,+E3;=0.0(2) and T,+ T3=—0.7(1)
distance exponential behavior of the fundamental two-poinfor N=2.
function. Then, positivity ofG{(x) requires the second-
moment correlation lengtl§; to be smaller thar¢;. As a

consequence, sinag,y~ ¢ (see Sec. llIA], |a;|<1/4. But ) .
this bound turns out to be much larger than the actual value !N Ref.[11] the authors discuss several approximate forms
of a,. for fg1(y). They present generalizations of the Fisher-

Burford [42] approximant for(¢¢). These approximations

are quite crude and do not reproduce the full Fisher-Langer

behavior for largey. A better approach based on dispersion
We also compute the constars and T; of the large-  theory was put forward by Bray24]. Here, we will apply the

momentum behavior offg +(y). Matching the large- same method to the universal functiohgy) and f(y).

momentum  expansion of the two-loop expression of A generalization of the arguments presented in [R24]

Ge 1(q,t) with Egs.(45) and(46), we obtain gives the following representation foi(y):

D. Interpolations of the structure factors

2. Large-momentum expansion
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yT, . [7yr
2v

0 _1_7T/(2V) 1.2 T T T
X 2 _ "
fT(y) =1—"—=sin f large 9,

. X—x+y F1(x), small g -~
(56)

where F+(x) is the spectral function satisfying,(«)=1.
We assume here that the only singularitiesfefy) in the
complex plane are branch cuts on the negative real axis anZ
that the leading one corresponds to the two-particle state, s
that the disk|y|<4S;, is free of singularities. Under this
assumption, the representati(g6) is exact.

For genericF+(x), Eq. (56) does not give the correct
Fisher-Langer behaviof46). Indeed, fory—o we obtain

fr(y)~const T,y 7/(2") We must thus require the con- o6 L— - :

stant to be zero. This gives the sum rule 01 ! y1° 100 1000
T o
_15in( WVT) dx x 1@IE(x)=1, (57 FIG. 1. Universal functiorfg(y) obtained using Eqg56) and
T 2v | Jas, (59 for N=1. We also report the large- behavior, fg(y)

. o o ~1.199 %9725 gnd the smallt behavior, fg(y)~1—0.013 6§
which allows the determination &f, onceF{(x) is given. +0.001 46%2—0.000 219°.

Equation(56) applies also td(y) with the obvious re- o _
placements. However, the sum ruf7) requiresa>0 and dicted by the approximation. FoN=1, using E,=

can thus be used only in the Ising case. ker0, Eq.(57)is ~ —2/3, E3=1/3, we obtainE;~1.20, e;~-0.016, e,
replaced by ~0.0019, in reasonable agreement with what is reported
above.
E,  [mal\|2v —al(20) In Fig. 1 we reportfg(y) for N=1 and in Figs. 2 and 3 a
7 SN2 ) e (4Sw) graph offe(y) and of f-(y) for N=2. It is interesting to

note that forN=2 the functionfg(y) varies slowly and dif-
fers from one only for quite large values gf Taking also
into account that the prefactor vanishestas0, theq? de-

pendence 06¢(q,t) should be hardly visible in experiments

In order to obtain approximate expressions for the structurand in numerical Monte Carlo simulations. Moreover, in this
factors, we must assume a specific form for the spectral funecasefz(y)=1 for all y, so that, because of the inequalitites
tion. For this purpose, we assume, as in R24], thatF1(x) (52), there is an attenuation of the singular behavior for in-
gives the exact Fisher-Langer behavior on the cut. Explicitlycreasingg, as generally expected.

we consider

+fw+dx X 1Y@ Fe(x)-1) | =1. (58

4Sy

(1 ) IV. EXPERIMENTAL APPLICATIONS

mil—a

CosS—5 — In this section we briefly discuss the applications to some
physical systems.

Fr(x)=1+Tx (=)@

m(l—a) 7yt
+sin——cot—— R T ] '
2v 2v é?;%ﬁgz __________ i
1.08
T . 7T TYyr
+Tox Y2 cos— +sin—cot——|. (59
3 > 5,05 (59 1.06

To completely determine the spectral function, we must 1.04

specify the constanfs, andT5. We use here the-expansion z 1.02
results of Sec. Il C. These estimates are not very precise, bu

the interpolation is quite insensitive dn andT5 separately. 1
Indeed, what really matters is their surg+ T that is more
accurately determined. In order to test these interpolations
we can compare the estimates Bf and a,—and, analo- 0.96 |
gously, ofE; and e;—with those of the preceding sections. . : : :
For N=2, using T,=—9 and T;=8.4, we obtainT; 0.1 ! 10 100 1000
~1.56, a;~—0.055, a,~0.008, which are reasonably y

close to the estimates reported before. Analogously, using FiG. 2. Universal functiorfc(y) obtained using Eq¢56) and
E,=—0.6 andE3=0.4, we obtairE;~1.00,e,~0.005, and  (59) for N=2. We also report the large- behavior, fc(y)
e,~—0.0007, again in reasonable agreement with previous-1.00/%°%8 and the smallf behavior, fg(y)~1+0.001 7Y
results. In particular, the fact thpg,|<|a,| is correctly pre-  —0.000 1692+ 0.000 024§°.

098

046115-9



CALABRESE, PELISSETTO, AND VICARI PHYSICAL REVIEW BE65 046115

1.4 T T T

rge & —— pected to be described by tXer universality class. Interest-
small g2~ ing examples in solids are charge-density wave systems, see,
1 e.g., Refs[57,58. In three-dimensional complex fluids the
density-wave phenomenon occurs at the nematic—smactic-
phase transition, which corresponds to the establishment of a
one-dimensional mass-density wave along the direction of
the orientational order. Beside the order parameéitgralso
higher harmonics, associated with the contribution
Reg,e'"%? to the density, are expected to show a critical
behavior, which is essentially induced by the critical behav-
ior of the fundamental fieldp,. Indeed, according to the
theory reported in Refg11,18), the average density modu-

oL : : lation ( ¢b,,) associated with the wave vectorj,z should be
01 ! 10 100 1000 proportional to (¢}), thus showing a singular behavior
y (pT)~tPn, where B,=2—a— ¢, and ¢, is the crossover
FIG. 3. Universal functiorf(y) obtained using Eqg56) and ~ €XPonent associated with tih-order anisotropy at th¥Y
(59) for N=2. We also report the large- behavior, f(y) fixed point. In the case=2, i.e., the second harmonic, the
~1.559 0263589 anq the small behavior, fr(y)~1—-0.039%  relevant operator is the traceless tensor opergjarcf. Eq.
+0.0053/2—0.000 85%°. (3), thus 8,= B7. The same theory predicts that the leading

) . } critical contribution to the structure factor
As already mentioned in the Introduction, the crossover

exponentg associated with the traceless tensor figldx)
describes the instability of the @)-symmetric theory
against anisotropy2-5]. It is thus relevant for the descrip-
tion of multicritical phenomena, for instance, the critical be-
havior near a bicritical point where two critical lines with
O(N) and OM) symmetry meet, showing a critical behavior
with enlarged ON+ M) symmetry, see, e.g., Reff6—8].
Physical realizations of bicritical points are provided by an-
tiferromagnets in a magnetic field. For instance, in the
T-H plane uniaxial antiferromagnetic spin systems may ;
present two lines of continuous transitions, characterized by Gn(Q):f dx €9(1(0)* ¢1(x)). (61)
an Ising andXY critical behavior, respectively, that meet at a
point, where the symmetry is enlarged t@D The crossover
exponentgr is relevant to describe the behavior of the sys-
tem in the neighborhood of the(8 symmetric point, see,
e.g., Ref[8].

Another interesting example of bicritical point appears in
the recent S(®) theory of highT. superconductivity]9].

According to this theory, the S6) symmetry should be re- ) : ;
alized at a bicritical point, where two critical lines merge: As discussed in Re{.11], the correlationsGe,r of qua-

one is related to the antiferromagnetic properties and is chaf.j-rat.iC operators are also relevant i.n the desg:ription of certain
acterized by an S@) symmetry and the other is associated iquid and solids, where an effective coupling between the

with superconductivity and has(l) symmetry. Actually, this order parameter and elastic d_eformatior_ls occurs, and may be
issue is still debated, since it is not clear whether thé530 measured by sound-aftenuation experiments. In these sys-

symmetric fixed point is really stable. On the one hand,tems’ for symmetry reasons, the lowest-order coupling is ex-

Monte Carlo simulations reported in RdR2] support its pected to be linear in the stra_lin anq guadratic in thel order
stability. On the other hand, Ref56] presents solid argu- parameter. A more thorough discussion can be found in Ref.

ments showing that another fixed point, i.e., the tetracritica[lll]& licati ‘ | h b v di di
decoupled fixed point, is stable. These two facts are not nec- f?gé]ca 1onS to polymers have been recently diSCUssed In
essarily in contradiction, since one cannot exclude the pre ~el. '

ence of two stable fixed points, although experience suggests

that this possibility is rather unlikely. APPENDIX A: LARGE-MOMENTUM BEHAVIOR FOR

Many physical systems exhibit phase transitions charac- THE BILINEAR CORRELATION FUNCTIONS
terized by the establishment of a density wave. The order

parameter of density waves in a uniaxial system is the com- In this appendix, we compute the large-momentum behav-
plex amplitude ¢,, associated with the contribution ior of the correlation function. We follow closely the discus-
Reg,€'9? to the density modulation, wherg, is the wave- sion of Refs.[48,60 for the correlation function of the
length of the modulation. The critical behavior is then ex-field ¢.

frly)

Sn(Q):f d*x €P($n(0)* pn(X)) (60)

is proportional to

In the case of the second harmon@&;(q) =G+(q), whose
scaling behavior has been determined in Sec. Ill. Some ex-
perimental results have been reported in R&%], and re-
analyzed in Refl14]. The small value oK;= —a, is crucial

to provide an explanatioll,18, consistently with RG
theory, of the experimental results of REL7].
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1. The energy correlation function
The basic ingredient of the calculation is the short- Q @ m
distance expansion of the product of operatdegx
+y/2)E(x—y/2). Fory—0, see, e.g., Ref30], this product

is equal to the sum of all the operators that are allowed by
symmetries, multiplied byC-number coefficients, that take m
into account the short-distance behavior. The most singular

contribution comes from the operators of smallest dimen-
sion. In this case, neglecting the contribution related to the

identity operator, it implies
E(x+Yy/2)E(x—y/2) @Q @O
(8
M ;

=C(y)E(x) + (less singular contributions

(9)
(A1)

Now, let us consider the connected correlation function @ @
of | composite operatorE(x), G"(py,....,p), and

its renormalized counterpart  GY(py, ... .,p) (1) )

— A=l R .
=ZiZy GO(py, ... ,p). Then, Eq.(A1) implies for p>m FIG. 4. Feynman diagrams contributing in the four-loop compu-

5 tation of the two-point function&g 1. The black blobs indicate the
GY(p,—p.0,...,0=C(p;mGY Y0,...,0, (A2) insertion of the bilinear operators.

TABLE VI. For each diagranj contributing to the energy and tensor two-point function we report: the
number of loopd, the symmetry facto®, , the group factoerE'T, and the expansion of the integig{y) in
fixed dimensiord=3.

) CE acT
| S ~ T 8m)'l;
j j N NN=T) (8m)'15(y)
2
1 1 2 1 2 T arctan?y
2 2 1 2+N 4 Yz
3 3
3 3 1 (2+N)? 8 3
2 9 9
) —0.0376821 0.0016080% -+ 0.00020997%>
4 3 = 2+N 2(2+N) ~0.00012233+ 0.0000404108*
3 3 3 —0.00001166895+ O(y®)
. - 24N 2(6+N) 0.5-0.10590% + 0.0222193?—0.0047768%>
3 9 +0.0010495¥*— 0.00023459¢°+ O(y®)
6 4 1 @tN? 16 14
4 27 27
7 4 2 (2+N)? 4(2+N) "
3 9 9
2
8 4 1 (2+N) 4(6+N) s
9 27
—0.0266277 0.0012789 + 0.00015747¢2
9 4 1 @+N)(B+N) 2(2+N)(8+N)  _0 00009573¢%+0.000031929*
27 27 —9.2602216- 6y°>+ O(y®)
10 a4 2 (EN)(8+N) 8(4+N) 0.25-0.060185% +0.013266 32— 0.0029229¢3
57 57 +0.00065162y*— 0.00014705¥>+ O(y®)
,. 0.322467-0.078679§ +0.017555§>
2 27 27 +0.000 876 3*—0.000 198 798°+ O(y®)
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TABLE VII. Coefficientse; ; anda; ;, cf. Egs.(B4) and (BS).

[ i & j(8+N)I/(2+N)2~ %0 a; j(N+8)
1o -3 -3
1 5 3
2 0.0290678 0.05813580.019543
3 0.2941-0.010501% 0.588201 0.15886M% — 0.04470%5\?
2 0 %1 %2
1 ~15 — 15
2 0.0280008-0.0208333\ 0.0560016+ 0.005859581
3 —0.0461270.022338N —0.0922537% 0.082845% +0.017389HN>
0 5 o
1 3360 7680
2 —0.0179798-0.011458% —0.0359598-0.0013716W
3 0.00517395 0.00217668! + 0.0023148N> 0.0103479-0.033373N —0.005622N?
1 ~ 5040 ~ 7520
2 0.00733893 0.004449N 0.0146779 0.000299778I
3 —0.000842908 0.00212268+0.0016203R? —0.00168582 0.011732N+ 0.00170808I2
1 1774080 887
2 —0.00253604-0.00149678! —0.00507208- 0.0000641568
3 —0.000390898 0.001535N —0.00074735K2 0.000781794 0.0037964 — 0.00050157K2
where we have explicitly written the mass dependence of the (~:( p:m)~m~2(p/m) =2~ 72=m~2(p/m)" W (A7)

short-distance coefficient. Since renormalized correlation

functions scale canonically, i.e.,
Now, using the above-reported results afydZ ,~m™" 7¢

G9(p,—p.0, ...,0=m2f(p/m), (A3) ~m*™~2for g=g*, see Eq(16), we obtain
we have 2
E(pim)=m-2E(plm). Ad) 26(p.—p)=G(0,0p,~ p)~m* #GL(0,0p,~p)
Renormalized correlation functions satisfy the Callan- ~m®~4"C(p;m)GF(0,0,0

Symanzik equation
y q N(p/m)71/de74/1/~tflfapfl/v_ (A8)

m%Jrﬁ(g)%_l 72(9) G(F?(pl, o) Integrating this equation twice with respectttave have

—m2o(9)GL (0,1, ... p)). (A5) G®(p,—p)=a(p)+b(p)t+ct’ ™ *p~+o(tt ),
(A9)

whereo(g) is a RG function satisfyingr(g*)=2—» and  \wherea(p) andb(p) are unknown functions gb. Compar-
72(9) = m(9) — 74(9). Applying the Callan-Symanzik ing this result with the scaling equatio82) and (33), we

equation to the relatiofA2) we obtain, settingy=g*, obtain finally Eq.(45).
J o |
m-—— 72(g%) |C(p;m)=0, (AB) 2. The tensor correlation function

The calculation is analogous. The short-distance expan-
and therefore, using E4A4), we have sion of the product;;(x)T;;(y) is given by
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TABLE VIII. Expansion coefficientx,, X,, andx; for ; anda; .

Xl XZ X3
e, 1 (2+N)(44+13N) -z
12
e 1 —40—270N—42N?+ N3 i
2 120 360
360
e 1 —352+1176N+ 180N?—5N3 _ 1
3 840 240
10080
o 1 1808- 307N — 4772+ 13N° 1
4 5040 1080
151200
e 1 — 3392+ 4208\ + 668N2— 17N° 1
5 277 20 4752
1108800
a, _ % 22—N %
12
a 1 — 20+ 44N+ 3N? _ 7
2 120 B ———— 360
720
a 1 —88—128N—9N? 1
3 840 _—_— 240
10080
a 1 904+ 778N+ 55N2 1
4 5040 —_— 1080
302400
a 1 —2544— 1768\ — 125N? 1
5 277 20 4752
3326400

Tij (X+ yIZ)T” (X— y/2)
=C+(y)E(x)+ (less singular contributions

(A10)

Now, we consider the connected correlation function with
fields E(x) and two fieldsT;;(x) with the indices summed
over,GQ)(pl,pz;ql, ... 1), and its renormalized counter-
part

)

=272,2,'7*6P(p1.p2as, - -

Ggl'l,)R(plapZ;QL Ce

i)

For p>m, we have

GYR(p,—p;0, ...,0~Cr(p;mGL (0, ...,0.
(A11)

The coefficientC(p;m) scales as in EqA4) and satisfies
the RG equation

Cr(p;m)=0, (A12)

J
m——2n,+
{ om N2T 12

where 7,= 71— 7,4 . Therefore,

Cr(pim)~m™2(p/m) 272" 72=m"2(p/m)~ (7P,
(A13)

As in the energy case, we consider the second derivative of
G (p,—p) with respect ta. For p>m, we have,

2
EG‘T‘”(p. —-p)=G¥(p,—p;0,0

~mB- 2201 1vGR)(p,— ;0,0
-~ m8_2/V_2¢T/VE:( p; m)G(RS)(O,O,O)

Np_(1+'}'T_a)/Vt_l_ll, (A14)

where we have used the fact that, fg=g*, Z;/Z,
~m7T" 7e~m?T/v"2 see Eqs(16) and(20). Integrating this
equation twice with respect tband using the scaling equa-
tion (31), we obtain the large-momentum behavid6).

APPENDIX B: PERTURBATIVE EXPANSION OF THE
TWO-POINT FUNCTIONS Gg 1

In order to compute the structure factor of the bilinear
fields, we determine the one-particle-irreducible diagrams
with insertions of two operatorg or T;; and zero external
legs. We use the susceptibilify as inverse mass square, so
that tadpole diagrams can be neglected. Also, subdiagrams
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TABLE IX. Expansion coefficients, andxs for e; anda; .

—1184—348\— 7N?

e X4
32
X —(2+N)(—4112- 2596\ — 466N%+ N°3)
24
e, X4 4512+ 142N+ 35N?
1280
X (2+N)(— 170624 78048\ — 8148N2+ 50N?%)
5760
e Xq —2311264- 726900 — 17883N?
4587520
Xs 586167808 604936960! + 160060792+ 886285N°%— 107701N*+ 2048N°
61931520
e X4 2370848+ 71945N + 16023N?
27525120
X —1006341632 1133004544 — 29076616812— 136092461°+ 208147N*— 3072N°
619315200
e Xq —2525643296- 724481980 — 133483352
155021475840
Xs 3084090980864 3778414828808 + 96136843962M2+ 4138054244R°— 69875186881* + 209715N°
10463949619200
a, X4 — 1376+ 764N+ 30IN?+ 14N°
64
X 7552- 278N — 569N~ 166N °— 100N*
96
a, Xs —(3104+ 1230N + 3185N2+ 140N°)
5120
Xs — 1087744 484736\ + 26236\ + 32383+ 2316N*
23040
as X4 1445632+ 196640 + 440020N° + 17885N°
4587520
X 568281088 262815488 — 14522562 — 1347292M°— 1114341N*—9216N°
61931520
a, Xq — (33881888 3454097 + 701880N2+ 256368N°)
440401920
Xs — 17032726784 7719736448!+ 9048481R1%+ 40931647N3+ 3619726M*+ 4915205
9909043200
a X4 5244438496 45657883401+ 8533474985l + 26696670°
310042951680
3417958003532814923763131008— 5137654842687 — 89511975560M° — 81461592928* — 1376256000(°
X5 104639496192000

that correspond to diagrams of the two-point funct{ehp) number of loops of the grapl§; the graph symmetry factor,
are subtracted at zero momentum. The diagrams contributing&.™ the group factor, and;(g?) the loop integral with unit

up to four loops are drawn in Fig. 4. The structure factors Ofmjass In Table VI, we repo; andCE'T
the bilinear fields can be expanded as ' ' ! -

We computed the coefficients and a; to four loops in
_ the fixed-dimensions expansion. The expansion of the loop
g(9,y)=uCg 1(u,q)= Z (=)' ty 25, CFT(0Px), integralsl ;(q?) is reported in Table VI. In the calculation, we
= (B1) used the results of Reff51,62,.
We also used the expression of the bare coupliras a

where the sum is over the graphs without tadpolas,the  function of the renormalized coupli@
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48775 _ 27N2+350N+ 1348 We compu_ted the coefficients anda, _in € expan_sion to
=M=\ 1+g+ 5 g° three loops, i.e., to ordes. The expansion of the integrals

(8+N) 27(8+N) 1,(y) andls(y) was obtained by using the algebraic algo-
rithm of Ref.[63].

u

. N3+ 17.363N%+ 120.78N+315.831,

—a We write
(8+ N)3 g +O(g )
(B2) N-4 1 , [(N+2)(N-4)
and the relation betweep andm, ei_N+8x1€+(N+8)3X26 * (N+8)3 X3\
4(N+2) _ N+2 (N+2) 1 3 4
2.0 _ _1_ 2_ 3 +——a X () +——=X +0 , B6
mPx=2Z,(g)=1 27(N+8)Zg 0'10699%N+—8)2g (NT8)? 46(3)+ g5 s € ("), (B6)
+0(gh). (B3)
N _N+4 N+4 , [(N+2)(N+4)
ertlng ai_N+8Xl€+(N+8)3X2€ (N+8)3 X3)\
_ - 1 1
e=> € g, (B4) - N 4
T i,j9 +(N+8)4X4§(3)+(N+8)5X5 e+0(e%), (BY)
a=Sa d B
a J-Zo 4.9 (B5) where\ =1.171953 619 344 729 445. The coefficiertsare

- o reported in Tables VIII and IX. Note th4l1] to order e,
we computed the coefficients ; anda; j up toj=3. They e;~—a/(6y) anda,~— y7/(6y). These relations do not

are reported in Table VII. hold at ordere®.
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